Testability

Dejan Markovic
dejan@ee.ucla.edu

Admin Info: Project / Final

- Final project report (more info on classwiki)
 - Final report (up to 6 pages), due: Fri, Dec 5 (2pm)
 - Email: ee216a@gmail.com

- Office hours during the finals week
 - Mon, Dec 8, 2:00-4:00pm (56-147E Eng-IV)

- Final exam
 - Wednesday, Dec 10, 11:30am – 2:30pm
 - Closed book, you may bring two-page notes
Overview

Reading
- W&H: Chapter 9

Introduction –
- Silicon debugging is a growing problem that accompanies the increasing complexity of current designs. This lecture discusses how chips fail, how chips are tested and debugged.
- “Design for Test and Debug” is the *art* of adding functionality to the chip to enhance its controllability and observability so that it can be effectively debugged and tested for correct operation.
 - **Controllability**: the ability to *set* the state of internal nodes from the chip’s input pads.
 - **Observability**: the ability to *propagate* the state of internal nodes to the chip’s output pads.

Do you want unhappy customers?

- Pentium FP divider bug in 1994 cost the company $450 million dollars.
 - People got fired over this!

Most slides in this lecture are from: Shannon Morton, (SGI), ISSCC 2003
Technology Scaling

- **IC Scaling**: 0.7x technology shrink ⇒ 2x increase in number of internal nodes
 - From 1µm technology to 0.1µm ⇒ 100x increase in complexity of internal state
 - Die size also increasing ⇒ even more states
 - Only a small *relative* increase in the number of pins available for test.
 - Longer lengths of interconnect (over a mile!)
 - More layers & tighter pitches ⇒ more IC faults

- Complexity
 - A combinational logic with N inputs implies 2^N test vectors.
 - A sequential logic with N inputs and M states implies $2^N + M$ test vectors.

Cost of Testing

- Man-hours required to generate sufficient test coverage (if at all possible) is *vastly* increased.

- Testing occurs at different stages and costs differently
 - Wafer, packaged chip, board, system, field
 - 10x more expensive at each level (wafer probing is $0.1/unit)

- Each part requires more time/tester, or more testers
 - 50M units at 1sec/unit ⇒ $5 million/year.
 - At least $2-3$ million for a 1000-pin tester.
 - Reduced volume ⇒ unable to meet demand ⇒ loss of potential revenue

- Increased risk of shipping defective parts
 - *Unhappy customers* ⇒ loss of ongoing revenue
Why Chips Fail?

- Process defects
- Reliability failures
- Iddq failures
- Timing and noise failures
- Soft errors
- Logic design failures

Process Defect Examples

- Missing or poorly formed via (*infant mortality*)
- Hillock causing an open in upper layer metal

Random and *systematic* defects
- Immediate functional failures / infant mortality
- Some causes of process defects
 - Dust particles, Oxide/Si defects/impurities/roughness
 - Lithographic errors, Temp & chemical composition of processes
Reliability

- Failure rates of devices follow a bathtub shape
 - Infant mortality: gross defects, poor manufacturing tolerances
 - Useful life: problems arising from wear and tear, random effects
 - Wear out: slower slope than infant side, but accelerated failures

\[
\begin{align*}
\text{Failure rate, } \lambda & \\
\text{Infant Mortality} & \quad \lambda \text{ Constant} & \quad \text{Useful life} & \quad \text{Wear out}
\end{align*}
\]

Courtesy: M. Horowitz

Burn-in Ovens

- Accelerate the infant mortality portion of the curve
 - Push all the parts into the “useful life” region
 - Discard the ones that die and sell the rest with high confidence

- Use burn-in ovens to heat / simultaneously exercise the parts
 - Bump up temperature and voltage to get “acceleration factors”
 - Temp held to 150-200°C and voltage to 1.5x-2x nominal (typical)

- Temperature depends on burn-in oven package solution
 - Package has a thermal resistivity, e.g. 0.24 °C/W
 - Holding oven at 125°C for 100W parts means 150°C junction temp

Courtesy: M. Horowitz
Burn-in Oven Boards

- Populate a burn-in board with your parts
 - Board exercises the parts (tests and/or power virus) during burn-in

- High-power chips strain the capacity of burn-in ovens
 - You can't put too many 100W and 100A chips on a burn-in board!

Iddq Failures

- Excessive standby current (through S/D & gate too)
 - Beyond that expected from sub-threshold leakage
 - Pseudo-nmos structures (typically disallowed)
 - Current references (analog circuitry)
 - May indicates process defect having caused a short

- Tested during bring-up & burn-in
 - May become less relevant as leakage (sub-Vth & gate) is increasing rapidly with each technology
 - May also be swamped by large L2/L3 SRAM leakage
Timing & Noise Failures

- Unforeseen **critical path** on chip
 - Perhaps only under certain bizarre conditions
 - Example: Insufficient differential into low-swing SA's
 - Particularly relevant to shrinks (interconnect scaling)

- **Glitch** resulting from excessive RLC noise
 - *Timing push-out* to await settling of glitch
 - Perhaps only under certain bizarre conditions
 - *Functional failure* if driven into state-holding circuitry
 - *Reliability failure* due to excessive coupling

Soft Errors - What are they?

- Alpha particle’s (He nucleus) released primarily from radioactive isotopes in lead (C4 bumps)
 - Cosmic rays of ≈GeV energy levels
- Collisions with Si atoms generate e⁻¹/hole pairs
- e⁻¹ are swept across PN junction reducing V_d

![diagram](image)
Soft Errors - Memory

- Memory is usually the focus
 - Dense; Low capacitance

- ECC codes are employed on large arrays to enable sufficient detection and correction.
- Parity checks used to enable sufficient detection
- C4 bumps may be prohibited over arrays, but...

Inject current into S/D region and measure how much charge \(Q_{crit} \) is needed to flip the cell

Soft Errors - Logic

- Logic is also prone to soft errors:
 - Dynamic nodes and latches may flip state
 - Static nodes may create a glitch that gets latched

- If ECC is employed on the arrays, even with C4 bumps over them, then logic soft-errors may govern overall FIT rate (failures in \(10^9 \) hours)
Logic Design Failures (Debug)

- Incorrect wiring into a gate
- Incorrect gate in a logic function
- Incorrect algorithm in the micro-architecture
- BUBBLE ERRORS!
 - Particularly between top or 2nd level blocks

\[Z = (A \cdot B + C) \cdot D + E \cdot F \]

VLSI Testing

- Testing is expensive: VLSI testers cost $1-5M
 - Volume manufacturing requires large number of testers
 - Test contributes 20-30% of the total chip cost

Types of testing

<table>
<thead>
<tr>
<th>Step</th>
<th>Error Source</th>
<th>Test Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design</td>
<td>Design flaws</td>
<td>Design verification</td>
</tr>
<tr>
<td>Prototype</td>
<td>Design flaws, Prototype flaws</td>
<td>Functional test ("silicon debug")</td>
</tr>
<tr>
<td>Manufacture</td>
<td>Physical defects</td>
<td>Manufacturing test</td>
</tr>
<tr>
<td>Shipping</td>
<td>Mfg. test, transport</td>
<td></td>
</tr>
<tr>
<td>System integration</td>
<td>Same</td>
<td>Functional test</td>
</tr>
<tr>
<td>Service</td>
<td>Stress, age</td>
<td>diagnosis</td>
</tr>
</tbody>
</table>

- Wafer / packaged chip / board / system / field

Courtesy: B. Nikolic
Testing Tools

- Several common “external” tools
 - Probing
 - Land a probe onto a top metal square (10x10 µm)
 - Imaging
 - Infrared – detect clock transitions
 - E-beam – reflected electrons from different voltage wires is different.
 - Idq – monitor supply current
 - FIB – focused ion beam
 - Can cut or deposit metal to correct wiring errors (shorts or opens).

- “Internal” tools
 - Design features to aid test and debug.

Manufacturing Test

- Employed as part of the production flow to screen out defective parts
 - Test patterns applied to the die/package to test for correctness against an ideal (fault-free) model
 - May also test for basic delay faults/characterization
 - Burn-in tests to weed out parts that are prone to early failure (infant mortality) in the field
 - Explicit Design For Test structures usually required

- Chip design must already be functionally sound
Functional Test

- Employed as part of the *bring-up flow* to debug the chip’s electrical, logical, and timing functionality
 - Evolving tests from basic ROM ⇒ Icache load & executing programs that fit wholly within caches
 - To full multi-processor high-end applications in a variety of “real” user systems
 - How do you identify the cause of a program failure?
 - Explicit [Design For Debug](#) structures are helpful

- Chip design is *becoming* functionally sound

Debugging Concepts

- Additional knobs available to debugging
 - Raising and lowering the temperature.
 - Simple lab – freeze spray and heat gun.
 - Raising and lowering the supply voltage.
 - Increase and decrease the cycle-time.
 - Adjusting the duty cycle (clock compression)

- Common fixes
 - Slow logic – raise supply or increase cycle time.
 - Race condition – increase temperature
 - Leakage – lower supply
Debugging a Chip

- Run parts on tester and exercise the Clk shrink mechanisms
 - Move clock edges to test speedpath theories

- Also vary the voltage and frequency
 - Obtain “schmoo” plots
 - Named (and misspelled) after the Li’l Abner comic strip (1940’s)
 - One of the first schmoo plots looked round and bulbous

A “shmoo” (plural: shmoon)
Resembles a type of plot used by EEs
(who can’t spell and call it a “schmoo”)

www.deniskitchen.com

Courtesy: M. Horowitz

Schmoo

- Sweeping the supply and operating frequency (often at various temperatures).
 - Selectively done as a manufacturing test.
- Can be an excellent way to determine problems.
- Example of common schmoos
Manufacturing Test Flow

- **Raw Materials**: Sliced, polished, processed, according to a great design.
- **Wafer Probe**: Probe card attached to ATE steps across each die: Basic functionality. Speed Paths.
- **Laser Repair**: Zap fuses to enable redundant blocks & improve yield. Repeat wafer tests. Mark bad die.
- **Packaged Parts**: Tests for more detailed functionality, speed binning.
- **Burn-in**: V/T stress over time, then re-test. Weeds out infant mortality failures.
- **System Test**: Real apps, I/O, Power, Performance, etc.

Cost of Doing DFT

- Increased area ⇒ less die/wafer & lower yield
 - Increased cost per good die
 - Increased cap ⇒ hurts power & performance

- Extra logic may be a part of the chip’s critical path
 - Reduced operating frequency ⇒ reduces revenue

- Test logic itself has a risk of introducing a bug
 - What tests the test logic?

- The cost of doing DFT is far easier to quantify than the cost of not doing DFT
Scan-based Test

- Scan chains offer observability and controllability
 - Observability: can stop the chip and read out all the states
 - Controllability: can stop the chip and set all the states
 - Can trace back to find source of errors

Building Scan Chains

- Idea: add parallel path to each flip-flop
 - Extra capacitance / area (typically <5% of the total chip area)
 - Ensure scan inputs can overwrite the state
 - Ensure scan doesn’t interfere with regular operation (backwriting)
 - Trend is to have scanable flip-flops (libraries typically have scan FFs)
Fault Models

- Defects manifest in a variety of ways and may require the application of different circuit models to test for their presence.

<table>
<thead>
<tr>
<th>Fault Model</th>
<th>Effect on Circuit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single Stuck-at Line</td>
<td>Single logic node stuck at 0 or 1</td>
<td>Most common — focus of this section</td>
</tr>
<tr>
<td>Multiple Stuck-at Line</td>
<td>Multiple logic nodes stuck at 0 or 1</td>
<td>Vast majority covered by SSL model [13]</td>
</tr>
<tr>
<td>Stuck-open</td>
<td>Logic node floats (X)</td>
<td></td>
</tr>
<tr>
<td>Bridging</td>
<td>Logic node becomes AND(x,y) or OR(x,y) or X depending on drive strengths</td>
<td>May not be very well covered by SSL (83/95 to 51/98) [14]</td>
</tr>
<tr>
<td>Delay</td>
<td>Gate or Path delay is increased</td>
<td></td>
</tr>
<tr>
<td>Coupling</td>
<td>Transition on node X causes Delay Fault on Y, or alters function Y=F(x,y)</td>
<td>bitlines, buses, register files</td>
</tr>
<tr>
<td>Pattern-Sensitive</td>
<td>Complex space-time dependence</td>
<td>RAM arrays</td>
</tr>
</tbody>
</table>

ATG Time

- Time required to generate a test vector set for all SA faults is a function of:
 - ATG technique & heuristics for decision-making
 - Number of Primary Inputs & Outputs
 - Number and size of sequential structures
 - Number of equivalent SA faults
 - Depth of logic from PI to PO (esp. for sequential!)

- Circuits with ≈10^6 gates or ≈10^3 latches may be too large to test with suitable SA coverage and in a reasonable amount of time.
Scan Methodologies

- **Full Scan**: Every latch in the design is a scan latch
 - Do NOT scan simple pipeline stages

- **Partial Scan**: A selection of latches are scannable
 - Where low SA coverage is identified
 - Sequential logic: counters, data forwarding paths
 - Important data buses: PC, load/store bus

- **Scan Islands**: No scan within blocks, but a ring of scan latches on the I/O surrounds the block
 - More applicable to debug
 - Good for shrinks

AMD’s K6 Flip-Flop

CLK must be inactive during scan

- Non-overlapping scan clocks ⇒ no race & looser to route
- No additional logic in the D→Q path (via ckplse) ⇒ good performance
Intel’s McKinley Flip-Flop

- Similar in principle to the AMD scan latch, but with a single clock
- No additional logic in the D→Q path (via ckplse), but o/p has extra load
- Scan operation results in true dynamic nodes ⇒ need to be cautious of noise, and a minimum scan rate is necessary due to leakage

Self-Test

- Becoming more important with increasing chip complexity and larger modules
Built-In Self-Test (BIST)

- The capability of a circuit to test itself
 - Minimal external requirements (ck, si, so, control)

<table>
<thead>
<tr>
<th>Pros</th>
<th>Cons</th>
</tr>
</thead>
<tbody>
<tr>
<td>At-speed testing of circuitry</td>
<td>Small area/delay penalty</td>
</tr>
<tr>
<td>Removes (or reduces) time and effort required for ATG</td>
<td>May be difficult for faults insensitive to random patterns (64-bit NOR)</td>
</tr>
<tr>
<td>Reduces tester time & ports, thereby saving $$$</td>
<td>Aliasing in output compression introduces risk in error detection</td>
</tr>
<tr>
<td>Independent of fault model</td>
<td></td>
</tr>
</tbody>
</table>

General BIST Architecture

- Pattern Generator *may* need to be initialized
- Error Status could be as simple as PASS / FAIL

- One BIST controller may govern multiple CUTs
 - This interfaces to the tester
 - I/O to/from controller is serial to reduce wiring
4-bit LFSR as a Pattern Generator

- All XOR functions can also be moved to the far RHS of LFSR
 - Enables regularity in datapaths
 - Example on next slide
- Easily incorporated into scan chain

Characteristic Polynomial: \(X^4 + X^2 + 1\)

<table>
<thead>
<tr>
<th>#</th>
<th>p4</th>
<th>p3</th>
<th>p2</th>
<th>p1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>13</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>14</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Signature Analyzers

- One’s counter: n-bit counter x m-bit inputs
- Transition counter: n-bit counter x m-bit inputs
- Single Input LFSR: n-bit LFSR x m-bit inputs

- Multiple Input LFSR: m-bit LFSR
Spare Gates

- Post-silicon edits can be done using Focused Ion Beams
 - Remove or add wires

- FIB cannot add new devices, but
 - Designers can throw some extra devices in the layout
 - Need to put them in the schematics too (remember, LVS…)

- Spare gates are basic cells with grounded inputs
 - They don’t do anything normally (except take up space)
 - You can insert them using a FIB edit layer
 - Mixture of Inv, Nand, Nor, Flops…
 - Plan on inserting these in your blocks, wherever you have room
 - Some companies call them “happy gates”

Courtesy: M. Horowitz

Electronic “Optics” Can Look at Chips

- Scanning electron microscope looks at chips in a vacuum
 - Useful for defect analysis, not really for tests during chip operation

Courtesy: M. Horowitz
E-beam Probing and Controlling

- E-beam probing is a technique that requires face access
 - Shoot electrons at the chip and measure reflected electrons
 - Grounded metals look bright; high-voltage metals look dark
 - Can probe metals this way to find out their voltages
 - Can also pulse e-beams at higher energy to charge up nodes
 * Mild form of controllability to go along with observability

 Focused Ion Beam (FIB) for Chip Edits

- FIB allows post-fabrication edits on silicon
 - Used to check if a proposed fix will actually work
 - Very expensive (~$400/hr), so don’t do it unless you need to
 * Usually 3-5 hours per “normal” fix / one chip at a time
- FIB edits can be additive or subtractive
 - Cut wires or lay down new wires
- FIB used to be from the top of the chip only
 - Today can also be used for backside FIB (for flip-chip)
FIB Repair

- FIB is typically used to etch & deposit metals to make repairs for bug fixes. Example:
 - Through your debug features, you believe the signal below needs to be AND'ed with another signal
 - Simulations seem to confirm this, but to be sure you’d like to try the repair on a real part to see if it truly does fix the bug
 - *Spare gates need to be included in the design*

![Diagram showing FIB repair process and components](Images courtesy of Accurel)

FIB Etch & Deposition Process

- FIB image of metal lines to be connected
- CAD overlay to identify locations of etch & deposition
- Final view of repair after FIB with chemical gases
Example of a FIB Job

- FIB milling and lifting of sample

www.msm.cam.ac.uk

Another FIB Example

Source: Stinson, Intel
Testing in University Environment

I/O hardware library, automated FPGA flow

![Diagram showing the flow of I/O hardware library, Hw lib, Custom tool 2, Speed Power Area, ASIC backend, FPGA backend, and Simulink.]

[FPGA implements ASIC logic analysis]

[D. Markovic, C. Chang, B. Richards, H. So, B. Nikolic, R.W. Brodersen, CICC’07]

FPGA Based ASIC Verification

- Goal: use Simulink testbench (TB) for ASIC verification
 - Develop custom interface blocks (I/O)
 - Place I/O and ASIC RTL into TB model

Simulink implicitly provides the testbench
Custom Interface Blocks (I/O)

- Sw / Hw interfaces
 - Regs, FIFOs, BRAMs

- External interfaces
 - GPIO ports

- A/D & D/A
 - Analog subs.

- Debugging
 - Signal gen.
 - Hw scope

Fully automated RTL flow for ASIC verification

Simulink Test Model
Initial Verification Strategy

- Testbench model on the FPGA board
 - Test vectors entered through RS232
- Block read / write operation
 - Custom `read_xps`, `write_xps` commands

Real-time performance bounded by GPIO

Example: SVD Test Model

Emulation-based ASIC I/O test
Example: FPGA Based ASIC Verification

Real-time at-speed ASIC verification

Test Example: Measured Functionality

4x4 MIMO channel tracking

Up to 10 b/s/Hz with adaptive PSK