Announcements

- Homework #1 will be posted by 9pm tonight
 - Due Wed, Oct 8, 2pm (in class or 56-127CC)

- Your classwiki accounts (216a group) have been activated
 - 30 students have signed up so far (~20 missing)
 - Please spread the word around (for those who didn’t come to class &
 didn’t put their e-mail on the class mailing list on EEweb)
 - MSOL: check your e-mail for important announcements
 (EE account, classwiki, discussions, office hours)

- Today’s lecture
 - Technology scaling
 - MOS transistor modeling
Technology Scaling is Power Driven

1970 1985 2000
- Bipolar → NMOS → CMOS → ???
 power wall power wall power wall

- System performance has benefited from higher integration
- In the mid 80’s, CMOS displaced NMOS technologies to address power dissipation
 - CMOS delivered better cost performance since it was more energy efficient and improved the integration level
 - At that time CMOS was on the horizon
- Replacing CMOS by another more energy efficient technology is a distant prospect now
 - Low-power high-speed CMOS technology is becoming an indispensable, rather than desirable, technology
 - Power is the main challenge we need to address

The Limits

Theoretical Practical

- System
- Circuit
- Device
- Material
- Fundamental

Theoretical limits: physics
Practical limits: + manufacturing cost

[J. Meindl, Proc. IEEE, 1995]
Circuit Limits

- #1: logic levels (gain)
- #2: energy/transition
- #3: delay
- #4: global interconnect

Circuit Limit #1: Logic Levels (Gain)

- Distinguish logic 0's from 1's (restore logic levels → |gain| > 1)

\[V_{dd} \geq (2kT/q)[1 + c_{fs}/(c_0 + c_d)]ln(2 + c_0/c_d) \]
\[\geq \beta kT/q \approx 0.1V, \; (T = 300K) \quad 2 < \beta < 4 \]

[J. Meindl, Proc. IEEE, 1995]
Circuit Limits (Cont.)

- **#2: energy/transition**
 - Neglecting static current
 \[E_{\text{tran}} = \frac{1}{2} C_L V_{dd}^2 \]

- **#3: delay**
 - Limited by
 \[I_{\text{sat}} \approx WC_{\text{ox}} v_{\text{sat}} (V_{GS} - V_T) \]
 \[t_d = \frac{1}{2} C_L V_{dd} \]

- **#4: global interconnect**
 - Interconnect delay should not exceed gate delay
 \[\tau \approx (2.3 R_{\text{gate}} + R_{\text{wire}}) C_{\text{wire}} \]
 \[R_{\text{wire}} < 2.3 R_{\text{gate}} \]

Practical Limits

- Scaling towards fundamental limits

~130nm is the most cost-effective technology (the last generation for which deep UV microlithography will suffice)

[J. Meindl, Proc. IEEE, 1995]
Practical Limits (Cont.)

- Metric: chip size \[D = \sqrt{\text{chip area}} \]

![Graph showing chip size vs calendar year](image1)

D = 50mm (16” wafer)
D = 40mm (12” wafer)
D = 25mm (8” wafer)

[J. Meindl, Proc. IEEE, 1995]

Practical Limits (Cont.)

- Packing efficiency = # transistors / min feature area

![Graph showing packing efficiency vs calendar year](image2)

↑ # mask levels
3D / vertical integration

↑ Layout density

Fig. 28. Packing efficiency \(PE \) versus calendar year \(Y \). Note that packing efficiency is defined as the number of transistors per minimum feature area.

[J. Meindl, Proc. IEEE, 1995]
Basic Scaling Trends

- **Const \(V_{DD} \)**
- **Const \(E \)**
- **General**

Doubles every 2 years

Frequency (Mhz): 8085, 8086, 286, 386, 486

Source: S. Borkar (Intel)

Constant Electric Field Scaling

- Dimensions and voltages scale by the same factor (speed!)
 - Idea of scaling voltage OK up to the point of leakage (exp\(^{-V_{TH}}\))

[B. Davari et al., Proc. IEEE, 1995]
Scaling Overview (Fixed V, Fixed E, General)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>W, L, t_{ox}</td>
<td>$1/S$</td>
<td>$1/S$</td>
<td>$1/S$</td>
<td>$1/S$</td>
</tr>
<tr>
<td>V_{DD}, V_T</td>
<td>1</td>
<td>$1/S$</td>
<td>$1/S$</td>
<td>$1/U$</td>
</tr>
<tr>
<td>Area/Device</td>
<td>WL</td>
<td>$1/S^2$</td>
<td>$1/S^2$</td>
<td>$1/S^2$</td>
</tr>
<tr>
<td>C_{ox}</td>
<td>$1/t_{ox}$</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>C_{gate}</td>
<td>$C_{ox} WL$</td>
<td>$1/S$</td>
<td>$1/S$</td>
<td>$1/S$</td>
</tr>
<tr>
<td>k_n, k_p</td>
<td>$C_{ox} WL$</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>I_{sat}</td>
<td>$C_{ox} WV$</td>
<td>1</td>
<td>$1/S$</td>
<td>$1/U$</td>
</tr>
<tr>
<td>Current Density</td>
<td>$I_{sat}/Area$</td>
<td>S^2</td>
<td>S</td>
<td>S^2/U</td>
</tr>
<tr>
<td>R_{on}</td>
<td>V/I_{sat}</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Intr. Delay</td>
<td>$R_{on} C_{gate}$</td>
<td>$1/S$</td>
<td>$1/S$</td>
<td>$1/S$</td>
</tr>
<tr>
<td>Power</td>
<td>$I_{sat} V$</td>
<td>1</td>
<td>$1/S^2$</td>
<td>$1/U^2$</td>
</tr>
<tr>
<td>P Density</td>
<td>Power/Area</td>
<td>S^2</td>
<td>1</td>
<td>S^2/U^2</td>
</tr>
</tbody>
</table>

High-Performance and Low-Power Flavors

[Source: T. Kuroda] [B. Davari et al., Proc. IEEE, 1995]
Reaching the Power Density Limit

- HS: out of the game
- Issues with LP
 - Soft-errors getting worse with low V_{DD} and reduced cap
 - Lower limit on V_{TH} (leakage)
 - Multi V_{TH}, multi V_{DD} running out of gas

μm^2, μm in μm

[Note: Figure with graph showing relative power density versus channel length (L, μm).]

MOS Transistor Modeling

- Many levels
 - Hand analysis
 - CAD analysis (e.g. Matlab)
 - Switch-level analysis (e.g. PrimeTime)
 - Circuit simulation (e.g. Spectre, HSPICE)

- These levels have different requirements in complexity, accuracy, and speed of convergence

- We are primarily interested in delay and energy modeling, rather than current modeling (but have to start from the currents)…
MOSFET, Notations

- Lateral diffusion
- Lower potential n+ sources e⁻ to current flows to higher potential n+ (drains e⁻)

General I-V Characteristic (Qualitative View)

- Fixed VGS, increasing VDS: general I-V shape
 - Ip: non-saturation
 - Ip: saturation (large VGS)
 - Ip: saturation (small VGS) above Vt

- In saturation, VDS drains all e⁻ that can be supplied by the channel
- Transition b/w linear and sat is smooth, but sometimes taken to be at a specific point, for convenience
- BODY BIAS: VGS > 0 ⇒ population of channel e⁻ ↑ ⇒ Ip ↓
Deep Submicron MOS I-V Model

- **Define** $V_{GT} = V_{GS} - V_T$

 - **For** $V_{GT} \leq 0$ (sub-V_{TH}):
 \[
 I_{DS} = I_0 \cdot \frac{W}{L} \cdot \frac{V_{GS} - V_T + V_{DS}}{s} \cdot (1 + \lambda \cdot V_{DS})
 \]

 - **For** $V_{GT} \geq 0$ (Lin, Sat, V-Sat):
 \[
 I_D = k' \cdot \frac{W}{L} \cdot \left(V_{GT} \cdot V_{min} - \frac{V_{min}^2}{2} \right) \cdot (1 + \lambda \cdot V_{DS})

 \text{with } V_{min} = \min(V_{GT}, V_{DS}, V_{DSAT})
 \]

Important Concepts to Understand

- Threshold voltage (review EE115C / lecture 2)
- Channel length modulation (channel pinch-off)
- Velocity saturation

CLM one of the first “short-channel” effects (also noticeable for sub-micron channels)
Modeling Channel Length Modulation (CLM)

- Many empirical models
 - Goal: get a simple model that is convenient for hand analysis
 - Here is a possible modeling approach:

\[
I_{DS} = \frac{\text{const}}{L_{eff} - L_p} = \frac{I_{ph}}{L_{eff} - L_p} \approx I_{P3} \left(1 + \frac{L_p}{L_{eff}} \right)
\]

\[
l_d = f(V_{DS}) \sim \sqrt{V_{DS}} \quad \text{or} \quad h_n(V_{DS}) \quad \text{(several models)}
\]

CLM Model

Simple empirical models:
\[\begin{align*}
a) \quad I_{DS} &= I_{DS0} \left(1 + \frac{V_{DS} - V_{MOS}}{V_{TH}} \right) \\
b) \quad I_{DS} &= I_{DS0} \left(1 + \frac{V_{DS} - V_{MOS}}{V_{TH} + V_{BS}} \right)
\end{align*}\]

Empirical model:
\[\left(1 + \gamma V_{BS} \right)\]
Typical values 0.05-0.5
\(V_{BS}\) dependent
Important Concepts to Understand

- Threshold voltage
- Channel length modulation (channel pinch-off)
- Velocity saturation

VELOCITY SATURATION

\[v_n = \frac{\mu n \cdot \xi}{1 + \xi / \xi_c} \quad \text{for} \quad \xi \leq \xi_c \]

\[v_n = v_{sat} \quad \text{for} \quad \xi > \xi_c \]

(continuity)

\[v_{sat} = \frac{\mu n \cdot \xi}{2} \]

Including Velocity Saturation

- Approximate velocity:

 \[v_n = \frac{\mu n \cdot \xi}{1 + \xi / \xi_c} \quad \text{for} \quad \xi \leq \xi_c \]

 \[v_n = v_{sat} \quad \text{for} \quad \xi > \xi_c \]

A more general model:

\[v_n = \frac{\mu n \cdot \xi}{(1 + (\xi / \xi_c)^n)^{1/n}} \]

we use \(n = 1 \)

- And integrate current again:

\[I_D = \frac{\mu n \cdot C_o x}{1 + V_{DS} / \xi_c L} \cdot \frac{W}{L} \cdot \left[(V_{GS} - V_T) \cdot V_{DS} - \frac{V_{DS}^2}{2} \right] \]

In **deep submicron**, there are four regions of operation:

1. cutoff
2. resistive
3. saturation
4. **velocity saturation**
Including Velocity Sat. in the I_D Formula

Modified I_D formula:

$$I_D = \frac{K_{m} \cdot W}{L} \left[(V_{GS} - V_{TH}) V_{DS} - \frac{V_{DS}^2}{2} \right] = I_{DSAT} @ V_{DSAT}$$

$$I_{DSAT} = W \cdot \mu \cdot \frac{2}{2} \left[(V_{GS} - V_{TH} - V_{DSAT}) \right]$$

$$\frac{M_{w} \cdot C_{ox} \cdot W}{2} \left(\frac{V_{GT} - V_{DSAT}}{2} \right) = \frac{M_{w} \cdot C_{ox} \cdot W}{1} \left(\frac{V_{GT} \cdot V_{DSAT} - V_{DSAT}^2}{2} \right)$$

$$\left(\frac{\varepsilon_{cL} \cdot V_{GT} + V_{DSAT}}{2} \right) \left(\frac{V_{GT} - V_{DSAT}}{2} \right) = V_{GT} \cdot V_{DSAT} - \frac{V_{DSAT}^2}{2}$$

$$\frac{\varepsilon_{cL} \cdot V_{GT} - \frac{\varepsilon_{cL} \cdot V_{DSAT} - V_{GT} \cdot V_{DSAT}}{2}}{2} = 0$$

$$V_{DSAT} = V_{GT} - \frac{V_{GT} \cdot V_{DSAT} - V_{DSAT}^2}{1 + \frac{V_{GT} \cdot V_{DSAT}}{2}} = K \cdot V_{GT}$$

Saturation vs. Velocity Saturation

- V-Sat occurs for lower V_{DS} than Sat

Diagram showing the relationship between I_D, V_{DS}, V_{GS}, and V_{TH}. The CLM also holds in V_{SAT}.
Another Look at Velocity Saturation

- Long-channel device
 - $V_{GS} = V_{DD}$
 - $V_{DS} = V_{DSAT}$
 - $V_{GS} - V_T$

- Short-channel device
 - $V_{DS} > V_{GS} - V_T > 0$

I_D versus V_{GS} (Assume $V_{DS} > V_{GS} - V_T > 0$)

- Long Channel (always Sat)
- Quadratic (Sat)
- Linear (V-Sat)
- Short Channel (Sat or V-Sat)
- Quadratic (Sat)

- small V_{GS}
- large V_{GS}
Simple Model vs. SPICE Simulation

- Transition between lin/v-sat has the largest modeling error

![Graph showing comparison between simple model and SPICE simulation](image)

Long vs. Short Channel (Simulation Data)

- 90nm device, constant W/L ratio
 - Long Channel: W/L = 2.4µm/0.5µm
 - Short Channel: W/L = 480nm/100nm

![Graph showing long vs. short channel comparison](image)

- Observations
 - Short L (100nm) has larger impact of CLM on \(I_D \)
 - Linear separation of V-Sat curves (red), quadratic for Sat (blue)
 - \(I_D(V\text{-Sat}) < I_D(Sat) \) at large \(V_{GS} \)
MOS Regions of Operation

- Nano-scale MOS devices operate in velocity saturation
 - Saturation still possible for low V_{GS} values (up to V_{DSAT})

Unified Formula for the Drain Current

- Many modes of operation can be nicely captured with a single formula:

\[
I_D = \frac{W}{L} \times \frac{C_\text{ox}}{2} \times \left(V_{GS} - \frac{V_{TH}}{2} \right) \times (1 + \lambda \times V_{DS})
\]

It introduces CLM into linear region, but this works fine because of small V_{DS} in linear mode.

Left = 70 nm

$\varepsilon = 4 \text{ V/\text{um}} \implies V_{DSAT} = \varepsilon \cdot \text{Left} = 0.3 \text{V}$
Unified Model: Observations

- CLM term \(1 + \lambda V_{DS}\) also included for linear region
 - Empirical, not grounded in physical considerations

- Five parameters: \(V_{T0}, \gamma, V_{DSAT}, k', \lambda\)
 - Can determine from physics
 - Or choose values that best match simulation data
 (match the best in regions that matter the most)
 - Use different model for \(L >> L_{min}\)
 (we assume \(L = L_{min}\) unless otherwise specified)

Let's see how to extract these key parameters from the I-V curves

The Meaning of Model Parameters

\[
\begin{align*}
V_{T0} & = \frac{I_{D1}}{I_{D2}} = \frac{(V_{GSS} - V_{T0})^2}{(V_{GSS} - V_{T0})^2} = V_{T0} \\
\gamma & = \text{same as for } V_{T0} \rightarrow \text{estimate } V_T \\
V_T & = V_{T0} + \gamma (\sqrt{2\phi_f + \gamma_{SB}} - \sqrt{2\phi_f}) \rightarrow \text{calculate } \gamma \\
\lambda & = \frac{1 + \lambda V_{DS}^1}{1 + \lambda V_{DS}^2} = \frac{I_{D1}}{I_{D2}} \Rightarrow \lambda \\
\lambda & = \text{assume } \lambda \text{ known from previous calculations} \\
I_D & = \lambda \frac{I_{D1}}{V_{GSS}} (V_{GSS} - V_{T0})^2 (1 + \lambda V_{DS}^2) \Rightarrow \lambda
\end{align*}
\]
Alpha Power Law Model

- Alternate approach, useful for hand analysis
 - Works better for delay than current

\[I_{DS} = \frac{1}{2} \mu C_{ox} \frac{W}{L}(V_{GS} - V_{T})^\alpha \]

- Empirical model
 - Curve fitting (MMSE)
 - \(\alpha \) is between 1 and 2
 - In 90nm, it is about 1.4
 (note: it depends on \(V_{T} \))
 - Can fit to \(\alpha = 1 \), but with what \(V_{T} \)?

[T. Sakurai, R. Newton, JSSC, Apr. 1990]

Second Order Effects

- Drain Induced Barrier Lowering (DIBL)
- Reverse Short Channel Effect (RSCE)
- Narrow Width Effects (NWE)
- Hot Carriers (HC)
Drain Induced Barrier Lowering (DIBL)

\[\Delta V_T \approx -2\beta L \frac{V_S}{2} \left[\left(V_{GS} + V_{BB} \right) + \beta \Delta V_S \right] \]

\(\Rightarrow \) even if we neglect CDM, \(I_{DS} \) will increase with \(V_S \) if \(\Delta V_T \)
\(\Rightarrow \) device turned off by \(V_S \), below \(\Delta V_T \) may turn on by \(\Delta V_S \)

Threshold Variations

Long-channel threshold

\[\text{Threshold as a function of channel length (for low } V_{DS} \text{)} \]

Low \(V_{DS} \) threshold

Drain induced barrier lowering (DIBL) (for low \(L \))

\[I_{DS, SC} = I_{DS, LC} \cdot e^{-\frac{\Delta V_T}{V_T}} \]

These factors in \(I_{DS, SC} \) V/VOS in sub-threshold formula
DIBL and RSCE

- RSCE is typical in today’s processes
 - Tradeoff between leakage power and performance

The Hot Carrier (HC) Effect

- Gets worse with technology scaling (shorter L)

\[
\begin{align*}
E & > E_c \text{ for HC} \\
\text{energy of } e^- & \text{ to jump into oxide} \\
\text{occurs } v=\text{sat} \\
\text{carriers acquire kinetic energy from the field, but their} & \\
\text{velocity is randomized by excessive collisions such that} & \\
\text{their velocity along the field direction no longer} & \\
\text{increases but their random kinetic energy does} \\
\end{align*}
\]
HC Effect Shows up Over Time

- Current drops over time due to HC

![Graph showing current drops over time due to HC](image)

- I_d due to HC effect (exhibited over time)
- $V_T \uparrow$ for NMOS
- $V_T \downarrow$ for PMOS

Sub-threshold Current

- This is another topic of crucial importance in digital design
 - We need to consider sub-threshold current, because digital designs have many millions of transistors and when these are inactive, we may get some lots wasted power...

$$I_d \text{ does not drop abruptly to } 0 \text{ if } V_{GS} = V_T$$

- Transition from "on" to "off" is gradual
- Parasitic BJT model makes sense for short L
Sub-threshold I_D versus V_{GS} is Exponential

Modeling the Sub-threshold Behavior

$$V_{BE} = V_{DD} = \frac{V_{GS}}{1 + \frac{C_d}{C_{ox}}}$$

BJT: $I_C = I_0 e^{V_{GS}/b_0}$

Formula for I_0:

$$I_0 = \frac{W}{L} \left(\frac{kT}{2} \right) e^{-\frac{V_T}{kT}}$$

Another formula:

$$I_0 = \frac{W}{W_0} 10 \frac{V_{GS} - V_T + 2V_{th}}{3} (1 + 2V_{th})$$
The Sub-threshold Slope Parameter

- Meaning: change in V_{GS} that gives 10x change in I_{DS}

$$S = n \left(\frac{kT}{I} \right) \ln 10 \frac{mV}{\text{dec}}$$

- S increases with temperature.
- n is intrinsic device topology and structure.
- Different process technology e.g., SOI.

Sub-Threshold I_D vs. V_{GS}

Physical model

$$I_{DS} = I_0 \cdot e^{- \frac{V_{GS}}{S}} \cdot (1 - e^{- \frac{V_{DS}}{kT/q}}) \cdot (1 + \lambda \cdot V_{DS})$$

$$I_0 = \mu \frac{W}{L} \frac{kT}{q} e^{- \frac{V_T}{q}}$$

Empirical model

$$I_{DS} = \frac{I_0 \cdot W}{W_0} \cdot 10^{\frac{V_{GS} - V_T + V_{DS}}{S}} \cdot (1 + \lambda \cdot V_{DS})$$

$$S = n \frac{kT}{q} \ln(10) \quad [mV/\text{dec}]$$
Example (90nm): Sub-Threshold I_D vs. V_{GS}

$$I_{DS} = I_0 \frac{W}{W_0} 10^{\frac{V_{GS}-V_T+V_{DS}}{S}} (1 + \lambda V_{DS})$$

$$S = \frac{kT}{q} \ln(10)$$

$90mV/\text{dec}$

V_{DS} from 0 to 0.4V

Example (90nm): Sub-Threshold I_D vs. V_{DS}

$$I_{DS} = I_0 \frac{W}{W_0} 10^{\frac{V_{GS}-V_T+V_{DS}}{S}} (1 + \lambda V_{DS})$$

$$S = \frac{kT}{q} \ln(10)$$

$gpd090$

V_{GS} from 0 to 0.3V
Stack Effect

- Transistor stacks greatly reduce leakage

NAND gate

Leakage power reduction

Deep Submicron MOS I-V Model (Summary)

Define \(V_{GT} = V_{GS} - V_{T} \)

For \(V_{GT} \leq 0 \) (sub-\(V_{TH} \)):

\[
I_{DS} = I_0 \cdot \frac{W}{W_n} \cdot 10^{\frac{V_{GS} - V_{T} + V_{DS}}{\lambda S}} \cdot (1 + \lambda \cdot V_{DS})
\]

For \(V_{GT} \geq 0 \) (Lin, Sat, V-Sat):

\[
I_D = k' \cdot \frac{W}{L} \cdot \left(V_{GT} \cdot V_{min} - \frac{V_{min}^2}{2} \right) \cdot (1 + \lambda \cdot V_{DS})
\]

With \(V_{min} = \min(V_{GT}, V_{DS}, V_{DSAT}) \)

Sat Lin V-Sat
Non-Ideal Behavior: Summary

- MOS transistor has 4 terminals (the fourth being the substrate/body)
 - Although it does not conduct significant current, it can impact performance.
 - Body effect: impacts how easy/difficult it is to turn on \(V_T \) the gate.

- The current in Saturation is not independent of \(V_{DS} \)
 - Especially as length is being scaled down with each generation.
 - Channel length modulation: the effective channel length is actually a function of the \(V_{DS} \).
 - Drain-induced barrier lowering
 * High \(E_{DS} \) must have an effect. \(V_T \) reduces as drain voltage increase.

- Velocity saturation
 - Charge velocity reaches a maximum with high \(E_{DS} \) (occurs primarily with device in Saturation)

- Subthreshold current
 - Small amount of current still trickles when \(V_{GS} < V_T \)

Actual gpdk090 Model (gpdk090_mos.scs)

section TT_s1v
parameters
+ s1v_rs_ne = 0.000000e+000 s1v_vsat_ne = 1.120000e+005 s1v_pldd_surf =
+ s1v_u0_ne = 3.700000e+010 s1v_u0_ne = 2.000000e-002 s1v_nch_ne = 5.200000e+017
+ s1v_rsc_ne = 4.082483e-014 s1v_bgbo_ne = 1.482000e+011 s1v_pldtn_ne = 1.000000e+001
+ s1v_rdc_ne = 4.082483e-014 s1v_vto0_ne = 1.692662e-001 s1v_s2_ne = 0.000000e+000
+ s1v_cog0_ne = 2.667600e-010 s1v_cgs0_ne = 4.865336e+000 s1v_wmne = 6.000000e+009
+ s1v_k1_ne = 2.825346e-001 s1v_cgs1_ne = 1.111500e+010 s1v_nidd_surf =
+ s1v_js_ne = 3.368667e-006 s1v_hdf_ne = 1.400000e+007 s1v_rds0_ne = 3.900000e-006
+ s1v_cjw_ne = 3.366667e+010 s1v_box_ne = 2.330000e-009 s1v_cj_ne = 7.983537e-004
+ s1v_cjw_ne = 4.790122e+011 s1v_xj_ne = 7.983537e-004 s1v_rsc_ne = 2.500000e+000
+ s1v_vio_ne = 0.000000e+000 s1v_pb_ne = 9.198524e-001 s1v_cj_ne = 4.594812e-011
+ s1v_vio_ne = 1.500000e-008 s1v_vjw0_ne = 1.995884e-011 s1v_rsh_ne = 1.000000e+001
+ s1v_vio_ne = 1.200000e+002 s1v_rch_ne = 4.000000e+017 s1v_rsc_ne = 2.868515e+014
+ s1v_cog0_ne = 1.392363e-011 s1v_vrd0_ne = 2.868515e+014 s1v_vjw0_ne = -1.359511e+000
+ s1v_vio_ne = 0.000000e+000 s1v_vjw0_ne = 2.506253e-010 s1v_cjw0_ne =
 1.043477e+001
+ s1v_vio_ne = 5.000000e-009 s1v_k1_ne = 2.637520e-001 s1v_cjw_ne = 1.044272e+010
+ s1v_vio_ne = 3.350000e-006 s1v_hdf_ne = 1.400000e+007 s1v_vds0_ne = 7.800000e-009
+ s1v_vio_ne = 3.350000e+010 s1v_tox_ne = 2.480000e-009 s1v_cj_ne = 7.912252e+004
+ s1v_vio_ne = 4.747351e+011 s1v_ldf_ne = 1.000000e-008 s1v_vj_ne = 2.500000e+008
+ s1v_vio_ne = 1.500000e+008 s1v_vjw0_ne = 1.000000e+009 s1v_cj_ne = 4.527119e+011
+ s1v_vio_ne = 1.000000e+000 s1v_vjw0_ne = 2.000000e+001

include "gpdk090_mos.scs" section
endsection TT_s1v
And many more parameters... (compare to our 5-parameter model)