Solutions of Homework #7

8.1a. Find \mathbf{H} in cartesian components at $P(2, 3, 4)$ if there is a current filament on the z axis carrying 8 mA in the a_z direction:

Applying the Biot-Savart Law, we obtain

$$
H_z = \frac{\int_{-\infty}^{\infty} d\mathbf{l} \times \mathbf{a}_R}{4\pi R^2} = \frac{\int_{-\infty}^{\infty} dz a_z \times [2a_x + 3a_y + (4 - z)a_z]}{4\pi (z^2 - 8z + 29)^{3/2}} = \frac{\int_{-\infty}^{\infty} dz [2a_y - 3a_x]}{4\pi (z^2 - 8z + 29)^{3/2}}
$$

Using integral tables, this evaluates as

$$
H_z = \frac{I}{4\pi} \left[\frac{2(2z - 8)(2a_y - 3a_x)}{52(z^2 - 8z + 29)^{1/2}} \right]_{-\infty}^{\infty} = \frac{I}{26\pi} (2a_y - 3a_x)
$$

Then with $I = 8$ mA, we finally obtain $H_z = -294a_x + 106a_y \mu A/m$

b. Repeat if the filament is located at $x = -1$, $y = 2$: In this case the Biot-Savart integral becomes

$$
H_y = \int_{-\infty}^{\infty} d\mathbf{l} \times \mathbf{a}_R \times [(2 + 1)a_x + (3 - 2)a_y + (4 - z)a_z] = \int_{-\infty}^{\infty} dz [3a_y - a_x]
$$

Evaluating as before, we obtain with $I = 8$ mA:

$$
H_y = \frac{I}{4\pi} \left[\frac{2(2z - 8)(3a_y - a_x)}{40(z^2 - 8z + 26)^{1/2}} \right]_{-\infty}^{\infty} = \frac{I}{20\pi} (3a_y - a_x) = -127a_x + 382a_y \mu A/m
$$

c. Find \mathbf{H} if both filaments are present: This will be just the sum of the results of parts a and b, or

$$
\mathbf{H}_T = \mathbf{H}_a + \mathbf{H}_b = -421a_x + 578a_y \mu A/m
$$

This problem can also be done (somewhat more simply) by using the known result for \mathbf{H} from an infinitely-long wire in cylindrical components, and transforming to cartesian components. The Biot-Savart method was used here for the sake of illustration.

8.2. A filamentary conductor is formed into an equilateral triangle with sides of length ℓ carrying current I. Find the magnetic field intensity at the center of the triangle.

I will work this one from scratch, using the Biot-Savart law. Consider one side of the triangle, oriented along the z axis, with its end points at $z = \pm \ell/2$. Then consider a point, x_0, on the x axis, which would correspond to the center of the triangle, and at which we want to find \mathbf{H} associated with the wire segment. We thus have $d\mathbf{l} = dz \mathbf{a}_z$, $R = \sqrt{z^2 + x_0^2}$, and $a_R = [x_0 a_y - z a_x]/R$. The differential magnetic field at x_0 is now

$$
d\mathbf{H} = \frac{I dz \mathbf{a}_z \times \mathbf{a}_R}{4\pi R^2} = \frac{I dz a_z \times (x_0 a_y - z a_x)}{4\pi (x_0^2 + z^2)^{3/2}} = \frac{I dz x_0 a_y}{4\pi (x_0^2 + z^2)^{3/2}}
$$

where a_y would be normal to the plane of the triangle. The magnetic field at x_0 is then

$$
\mathbf{H} = \int_{-\ell/2}^{\ell/2} \frac{I dz x_0 a_y}{4\pi (x_0^2 + z^2)^{3/2}} = \frac{I x_0 a_y \sqrt{\ell^2 + 4x_0^2}}{4\pi x_0 \sqrt{\ell^2 + 4x_0^2}^{1/2}} = \frac{I}{2\pi} \frac{x_0 a_y}{\sqrt{\ell^2 + 4x_0^2}}
$$

8.2. (continued). Now, x_0 lies at the center of the equilateral triangle, and from the geometry of the triangle, we find that $x_0 = (\ell/2)\tan(30^\circ) = \ell/(2\sqrt{3})$. Substituting this result into the just-found expression for \mathbf{H} leads to $\mathbf{H} = 3I/(2\pi\ell) a_y$. The contributions from the other two sides of the triangle effectively multiply the above result by three. The final answer is therefore $H_{net} = 9I/(2\pi\ell) a_y \mu A/m$. It is also possible to work this problem (somewhat more easily) by using Eq. (9), applied to the triangle geometry.
8.7. Given points $C(5,-2,3)$ and $P(4,-1,2)$; a current element $I dL = 10^{-4}(4,-3,1)$ $A \cdot m$ at C produces a field dH at P.

a) Specify the direction of dH by a unit vector a_H: Using the Biot-Savart law, we find

$$dH = \frac{I dL \times a_{CP}}{4\pi R_{CP}^2} = \frac{10^{-4}[4a_x - 3a_y + a_z] \times [-a_x + a_y - a_z]}{4\pi 3^{3/2}} = \frac{[2a_x + 3a_y + a_z] \times 10^{-4}}{65.3}$$

from which

$$a_H = \frac{2a_x + 3a_y + a_z}{\sqrt{14}} = 0.53a_x + 0.80a_y + 0.27a_z$$

b) Find $|dH|$.

$$|dH| = \frac{\sqrt{14 \times 10^{-4}}}{65.3} = 5.73 \times 10^{-6} \text{ A/m} = 5.73 \mu\text{A/m}$$

c) What direction a_H should $I dL$ have at C so that $dH = 0$? $I dL$ should be collinear with a_{CP}, thus rendering the cross product in the Biot-Savart law equal to zero. Thus the answer is $a_H = \pm(-a_x + a_y - a_z)/\sqrt{3}$

8.10. A hollow spherical conducting shell of radius a has filamentary connections made at the top $(r = a, \theta = 0)$ and bottom $(r = a, \theta = \pi)$. A direct current I flows down the upper filament, down the spherical surface, and out the lower filament. Find H in spherical coordinates (a) inside and (b) outside the sphere.

Applying Ampere’s circuit law, we use a circular contour, centered on the z axis, and find that within the sphere, no current is enclosed, and so $H = 0$ when $r < a$. The same contour drawn outside the sphere at any z position will always enclose I amps, flowing in the negative z direction, and so

$$H = \frac{I}{2\pi \rho} a_\phi = -\frac{I}{2\pi r \sin \theta} a_\phi \text{ A/m} \quad (r > a)$$

8.15. Assume that there is a region with cylindrical symmetry in which the conductivity is given by $\sigma = 1.5e^{-150\rho}$ kS/m. An electric field of 30a_x V/m is present.

a) Find J: Use

$$J = \sigma E = 45e^{-150\rho} a_x \text{ kA/m}$$

b) Find the total current crossing the surface $\rho = \rho_0$, $z = 0$, all ϕ:

$$I = \int \int J \cdot dS = \int_0^{2\pi} \int_0^{\rho_0} 45e^{-150\rho} \rho d\rho d\phi = \frac{2\pi(45)}{(150)^2} e^{-150\rho_0} [-150\rho_0 - 1]_0^{\rho_0} \text{ kA}$$

$$= 12.6 [1 - (1 + 150\rho_0)e^{-150\rho_0}] \text{ A}$$

c) Make use of Ampere’s circuit law to find H: Symmetry suggests that H will be ϕ-directed only, and so we consider a circular path of integration, centered on and perpendicular to the z axis. Ampere’s law becomes: $2\pi \rho H_\phi = I_{circ}$, where I_{circ} is the current found in part b, except with ρ_0 replaced by the variable, ρ. We obtain

$$H_\phi = \frac{2.00}{\rho} [1 - (1 + 150\rho)e^{-150\rho}] \text{ A/m}$$
8.16. A balanced coaxial cable contains three coaxial conductors of negligible resistance. Assume a solid inner conductor of radius \(a\), an intermediate conductor of inner radius \(b_i\), outer radius \(b_o\), and an outer conductor having inner and outer radii \(c_i\) and \(c_o\), respectively. The intermediate conductor carries current \(I\) in the positive \(a_o\) direction and is at potential \(V_o\). The inner and outer conductors are both at zero potential, and carry currents \(I/2\) (in each) in the negative \(a_o\) direction. Assuming that the current distribution in each conductor is uniform, find:

a) \(J\) in each conductor: These expressions will be the current in each conductor divided by the appropriate cross-sectional area. The results are:

\[
\text{Inner conductor: } J_a = -\frac{I}{2\pi a^2} \ A/m^2 \quad (0 < \rho < a)
\]

\[
\text{Center conductor: } J_b = \frac{I}{\pi(b_o^2 - b_i^2)} \ A/m^2 \quad (b_i < \rho < b_o)
\]

\[
\text{Outer conductor: } J_c = -\frac{I}{2\pi(c_o^2 - c_i^2)} \ A/m^2 \quad (c_i < \rho < c_o)
\]

8.16b) \(H\) everywhere:

For \(0 < \rho < a\), and with current in the negative \(z\) direction, Ampere’s circuit law applied to a circular path of radius \(\rho\) within the given region leads to

\[
2\pi \rho H = -\frac{\rho^2}{\pi} J_a = -\frac{\rho^2 I}{2\pi a^2} \quad \Rightarrow \quad H_1 = -\frac{I}{4\pi a^2} a_o \ A/m \quad (0 < \rho < a)
\]

For \(a < \rho < b_i\), and with the current within in the negative \(z\) direction, Ampere’s circuital law applied to a circular path of radius \(\rho\) within the given region leads to

\[
2\pi \rho H = -I/2 \Rightarrow H_2 = -\frac{I}{4\pi \rho} a_o \ A/m \quad (a < \rho < b_i)
\]

Inside the center conductor, the net magnetic field will include the contribution from the inner conductor current:

\[
2\pi \rho H = -I/2 + \frac{\pi \rho^2}{\pi(b_o^2 - b_i^2)} J_b = -\frac{I}{4\pi \rho} \left[\frac{2(\rho^2 - b_i^2)}{(b_o^2 - b_i^2)} - 1 \right] a_o \ A/m \quad (b_i < \rho < b_o)
\]

Beyond the center conductor, but before the outer conductor, the net enclosed current is \(I - I/2 = I/2\), and the magnetic field is

\[
H_3 = -\frac{I}{4\pi \rho} a_o \quad (b_o < \rho < c_i)
\]

Inside the outer conductor (with current again in the negative \(z\) direction) the field associated with the outer conductor current will subtract from \(H_4\) (more so as \(\rho\) increases):

\[
H_4 = -\frac{I}{4\pi \rho} \left[1 - \frac{\rho^2}{(c_o^2 - c_i^2)} \right] a_o \ A/m \quad (c_i < \rho < c_o)
\]

Finally, beyond the outer conductor, the total enclosed current is zero, and so

\[
H_6 = 0 \quad (\rho > c_o)
\]
c) Electric everywhere: Since we have perfect conductors, the electric field within each will be zero. This leaves the free space regions, within which Laplace’s equation will have the general solution form, \(V(\rho) = C_1 \ln(\rho/a) + C_2 \). Between radii \(a \) and \(b \), the boundary condition, \(V = 0 \) at \(\rho = a \) leads to \(C_2 = -C_1 \ln a \). Thus \(V(\rho) = C_1 \ln(\rho/a) \). The boundary condition, \(V = V_0 \) at \(\rho = b \), leads to \(C_1 = \frac{V_0}{\ln(b/a)} \), and so finally, \(V(\rho) = \frac{V_0}{\ln(\rho/a)} / \ln(b/a) \). Now

\[
E_1 = -\nabla V = -\frac{dV}{d\rho} a_\rho = -\frac{V_0}{\rho \ln(b/a)} a_\rho \ V / m \quad (a < \rho < b)
\]

Between radii \(b \) and \(c \), the boundary condition, \(V = 0 \) at \(\rho = c \), leads to \(C_2 = -C_1 \ln c \). Thus \(V(\rho) = c_1 \ln(\rho/c) \). The boundary condition, \(V = V_0 \) at \(\rho = b \), leads to \(C_1 = \frac{V_0}{\ln(b/c)} \), and so finally, \(V(\rho) = \frac{V_0}{\ln(\rho/c)} / \ln(b/c) \). Now

\[
E_2 = -\frac{dV}{d\rho} a_\rho = -\frac{V_0}{\rho \ln(b/c)} a_\rho = \frac{V_0}{\rho \ln(c/b)} \ a_\rho \ V / m \quad (b < \rho < c)
\]

8.19. Calculate \(\nabla \times [\nabla (\nabla \cdot \mathbf{G})] \) if \(\mathbf{G} = 2xz \mathbf{a}_x - 20y \mathbf{a}_y + (x^2 - z^2) \mathbf{a}_z \): Proceeding, we first find \(\nabla \cdot \mathbf{G} = 4xy z - 20 - 2z \). Then \(\nabla (\nabla \cdot \mathbf{G}) = 4yz \mathbf{a}_x + 4xz \mathbf{a}_y + (4xy - 2) \mathbf{a}_z \). Then

\[
\nabla \times [\nabla (\nabla \cdot \mathbf{G})] = (4x - 4x) \mathbf{a}_x - (4y - 4y) \mathbf{a}_y + (4z - 4z) \mathbf{a}_z = 0
\]

8.23. Given the field \(\mathbf{H} = 20 \rho^2 \mathbf{a}_\phi \ A/m \):

a) Determine the current density \(\mathbf{J} \): This is found through the curl of \(\mathbf{H} \), which simplifies to a single term, since \(\mathbf{H} \) varies only with \(\rho \) and has only a \(\phi \) component:

\[
\mathbf{J} = \nabla \times \mathbf{H} = \frac{1}{\rho} \frac{d}{d\rho} (\rho \mathbf{a}_\phi) = \frac{1}{\rho} \frac{d}{d\rho} (20 \rho^3) \mathbf{a}_z = 60 \rho \mathbf{a}_z \ A/m^2
\]

b) Integrate \(\mathbf{J} \) over the circular surface \(\rho = 1, \ 0 < \phi < 2\pi, \ z = 0 \), to determine the total current passing through that surface in the \(\mathbf{a}_z \) direction: The integral is:

\[
I = \int_0^{2\pi} \left[\int_0^1 60 \rho \mathbf{a}_z \cdot \rho d\rho \right] d\phi = 40\pi \ A
\]

c) Find the total current once more, this time by a line integral around the circular path \(\rho = 1, \ 0 < \phi < 2\pi, \ z = 0 \):

\[
I = \oint \mathbf{H} \cdot d\mathbf{L} = \int_0^{2\pi} 20 \rho^2 \mathbf{a}_\phi \ |_{\rho=1} \cdot (1)d\phi = 40\pi \ A
\]
8.29. A long straight non-magnetic conductor of 0.2 mm radius carries a uniformly-distributed current of 2 A dc.

a) Find \mathbf{J} within the conductor: Assuming the current is $+z$ directed,
\[
\mathbf{J} = \frac{2}{\pi (0.2 \times 10^{-3})^2} a_z = 1.59 \times 10^7 \text{ A/m}^2
\]

b) Use Ampere’s circuital law to find \mathbf{H} and \mathbf{B} within the conductor: Inside, at radius ρ, we have
\[
2\pi \rho H_\rho = \pi \rho^2 J \quad \Rightarrow \quad H = \frac{\rho J}{2} a_\phi = 7.96 \times 10^6 \rho a_\phi \text{ A/m}
\]

Then $\mathbf{B} = \mu_0 \mathbf{H} = (4\pi \times 10^{-7})(7.96 \times 10^6) a_\phi = 10\rho a_\phi \text{ Wb/m}^2$.

c) Show that $\nabla \times \mathbf{H} = \mathbf{J}$ within the conductor: Using the result of part b, we find,
\[
\nabla \times \mathbf{H} = \frac{1}{\rho} \frac{d}{d\rho} (\rho H_\phi) a_z = \frac{1}{\rho} \frac{d}{d\rho} \left(\frac{1.59 \times 10^7 \rho^2}{2} \right) a_z = 1.59 \times 10^7 a_z \text{ A/m}^2 = \mathbf{J}
\]

d) Find \mathbf{H} and \mathbf{B} outside the conductor (note typo in book): Outside, the entire current is enclosed by a closed path at radius ρ, and so
\[
\mathbf{H} = \frac{I}{2\pi \rho} a_\phi = \frac{1}{\pi \rho} a_\phi \text{ A/m}
\]

Now $\mathbf{B} = \mu_0 \mathbf{H} = \mu_0/\pi \rho a_\phi \text{ Wb/m}^2$.

e) Show that $\nabla \times \mathbf{H} = \mathbf{J}$ outside the conductor: Here we use \mathbf{H} outside the conductor and write:
\[
\nabla \times \mathbf{H} = \frac{1}{\rho} \frac{d}{d\rho} (\rho H_\phi) a_z = \frac{1}{\rho} \frac{d}{d\rho} \left(\frac{1}{\pi \rho} \right) a_z = 0 \quad (\text{as expected})
\]