A circular conductor in the x-y plane is embedded in an external magnetic field $\vec{B} = 0.2 \cdot \cos(120\pi t) \, \hat{a}_z \, T$. Assume that the conductor joining the two ends of the resistor R is perfect (the magnetic field produced by $I(t)$ is negligible).

(a) Find both $V_{ab}(t)$ and $I(t)$ as a function of time t.

(b) In which direction does the induced current flow if the magnetic field (pointing out of the paper plane) decreases in time?

(c) How would the result from a) change if \vec{B} would point into the \hat{a}_x direction?