2) The current density is given as

\[J = \exp\left(-10^3 s^{-1} \cdot t\right) \cdot \frac{2}{r} \cdot \frac{A}{m} \]

a) How much current is crossing the surface \(r = 10 m \) at the line \(t = 1 \text{ ms} \)?

\[
I = \oint J \, dS = J \oint dS = \exp\left(-\frac{10^3 \cdot 10^3}{r_0}
ight) \cdot \frac{2}{10m} \cdot 4\pi 10^2 m^2 \frac{A}{m} = 92.5 A
\]

b) Repeat for \(r = 4 m \)

\[
I = \exp(-1) \cdot \frac{2}{4m} \cdot 4\pi 4^2 m^2 \frac{A}{m} = 2.9 A
\]

c) Use the continuity equation to find \(P_v(r,t) \), under the assumption that \(P_v \to 0 \) as \(t \to \infty \)

\[
\nabla \cdot J = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{2}{r} \exp\left(-10^3 s^{-1} t\right) \frac{A}{m} \right) = \frac{2}{r^2} \exp\left(-10^3 s^{-1} t\right) \frac{A}{m} = -\frac{\partial P_v}{\partial t}
\]

\[
P_v (r,t) = -\int \frac{2}{r^2} \exp\left(-10^3 s^{-1} t\right) \frac{A}{m} \, dt + f(r)
\]

\[
= \frac{2 \cdot 10^{-3}}{r^2} \cdot \exp\left(-10^3 s^{-1} t\right) \frac{As}{m} + f(r)
\]

If \(t \to \infty \) then \(P_v \to 0 \) \(\Rightarrow f(r) = 0 \)

\[
\Rightarrow P_v (r,t) = \frac{2 \cdot 10^{-3}}{r^2} \cdot \exp\left(-10^3 s^{-1} t\right) \frac{As}{m}
\]
d) What is the charge density at the surface and line from a)

\[r = 10 \text{ m}, \quad t = 10^{-3} \text{ s} \]

\[\Rightarrow \rho_v = \frac{2 \times 10^{-3}}{(10 \text{ m})^2} \cdot \exp(-1) \frac{A}{m} = 7.4 \times 10^{-6} \frac{C}{m^3} = 7.4 \frac{C}{cm^3} \]

\(F \) How can it be possible that more current leaves the \(r = 10 \text{ m} \) surface, than the \(r = 4 \text{ m} \) surface?

\(V(10 \text{ m}) = 10^4 \frac{m}{s}, \quad V(4 \text{ m}) = 4 \times 10^{-3} \frac{m}{s} < V(\text{km}) \)

\(\Rightarrow \) the charges are accelerated.

This acceleration leads to \(I_2 > I_1 \), while the total charge is conserved.

\(\rho \) Find an expression for the velocity of the charge density

\[v = \frac{J}{\rho_v} = \frac{\frac{2}{r} \cdot \exp(-10^3 s + t) \frac{A}{m} \frac{A}{s}}{2 \times 10^{-3} r^2 \cdot \exp(-10^3 s + t) \cdot \frac{A}{m}} \]

\[= 10^3 r \cdot \frac{A}{s} \frac{1}{s} \]
two concentric cylindrical conductors in free space

\[r_a = 0.01 \text{ m}, \quad r_b = 0.08 \text{ m} \]

have surface charge densities \(P_{s,a} = 40 \frac{\text{C}}{\text{m}^2} \) and \(P_{s,b} \) such that \(D \) and \(E \) fields exist between the two cylinders but are zero elsewhere.

Find \(D \) and \(E \) between the cylinders.

By symmetry, the field between the cylinders must be radial and a function of \(r \) only.

For \(r_c < r < r_b \)

\[\mathbf{E} \cdot \mathbf{r} = \frac{1}{r} \frac{\partial}{\partial r} (r \cdot D_r) = 0 \]

for every \(r \Rightarrow r \cdot D_r \) must be constant

\[r \cdot D_r = c \]

To get \(c \)

\[D_r \cdot 4\pi r^2 = \mathbf{A} \]

\[D_r = \frac{\mathbf{A}}{4\pi r^2} = P_c(r) \]

at \(r = r_a + a \)

\[D_r = 40 \cdot 10^{-12} \frac{\text{C}}{\text{m}^2} \]

\[C = r \cdot D_r = 0.01 \text{ m} \cdot 40 \cdot 10^{-12} \frac{\text{C}}{\text{m}^2} = 4 \cdot 10^{-13} \frac{\text{C}}{\text{m}} \]

and so \(D = \frac{4 \cdot 10^{-13}}{r} \frac{\text{C}}{\text{m}} \)
\[E = \frac{D}{\varepsilon_0} = \frac{4.52 \cdot 10^{-2}}{r} \text{ V} \]

\[P_{sh} = -\frac{D}{\varepsilon_0} = -\frac{4.6^{-13}}{0.08} \frac{c}{m^2} = -5 \frac{pc}{m^2} \]
3) A cylindrical wire of conductivity σ_1, and radius r_1, is surrounded by a cylindrical jacket of conductivity σ_2 (inner radius r_1, outer radius r_2, $r_2 > r_1$).

Show that the ratio of the current densities in the two materials is independent of r_1 and r_2.

A constant voltage between the two ends of the wire means that the field within must be constant throughout the wire cross section.

\[E = \frac{J_1}{\sigma_1} = \frac{J_1}{\sigma_2} \]

\[\Rightarrow \frac{J_1}{J_2} = \frac{\sigma_1}{\sigma_2} \quad \text{independent of } r_1, r_2 \]

q.e.d.
A brass tube has an inner radius of 2 cm, and a wall thickness of 1 mm, and a length of 1 m. The conductivity of brass is $\sigma = 1.5 \cdot 10^{-7} \ \text{S/m}$.

A current of 150 A dc is flowing down the tube.

(a) What is the voltage drop across a 1 m length of the tube?

$$R = \frac{L}{\sigma \cdot A} = \frac{1 \text{ m}}{1.5 \cdot 10^{-7} \ \text{S/m} \cdot (\pi (2.1 \text{ cm})^2 - \pi (2 \text{ cm})^2)}$$

$$= 5.2 \cdot 10^{-4} \ \Omega$$

$$V = \frac{I}{R} = 150 \text{ A} \cdot 5.2 \cdot 10^{-4} \ \Omega = 77.6 \ \text{mV}$$

(b) What is the voltage drop if the interior of the tube is filled with a conducting material of $\sigma = 1.5 \cdot 10^5 \ \text{S/m}$.

$$R_{\text{inner}} = \frac{1 \text{ m}}{1.5 \cdot 10^5 \ \text{S/m} \cdot \pi (2 \text{ cm})^2} = 5.3 \cdot 10^{-3} \ \Omega$$

Total resistance is

$$R_T = \frac{R_1 \cdot R_2}{R_1 + R_2} = 0.00047 \ \Omega$$

$$\Rightarrow V = 150 \text{ A} \cdot 0.00047 \ \Omega = 71 \ \text{mV}$$
5.) Prove that two resistors R_1 and R_2 in parallel behave like one resistor with a total resistance of $R_{\text{tot}} = \frac{R_1 \cdot R_2}{R_1 + R_2}$.

\[V = \frac{L}{b \cdot s} \cdot I \]

Two resistors in series see the same potential drop. The total current through both resistors is

\[I = I_1 + I_2 \]

\[I_1 = \frac{V \cdot b_1 \cdot S_1}{L_1} \]

\[I_2 = \frac{V \cdot b_2 \cdot S_2}{L_2} \]

\[I = V \left(\frac{b_1 \cdot S_1}{L_1} + \frac{b_2 \cdot S_2}{L_2} \right) = \frac{1}{\frac{1}{R_1} + \frac{1}{R_2}} \]

\[\Rightarrow \frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} \quad \text{or} \quad R = \frac{R_1 \cdot R_2}{R_1 + R_2} \]
6.) A battery of voltage \(V \) is attached across a cylindrical wire resistor of length \(L \) and cross-sectional area \(A \).

If I double the length of the resistor but attach it to the same battery, what happens to the drift velocity of electrons \(v_d \) in the new resistor (compared to the short resistor)?

Length increases, but potential difference stays the same.

\[E = \frac{V}{L}, \text{ hence } E \text{ decreases} \]

\[v_d \propto E, \text{ hence } v_d \text{ decreases} \]

6.) A battery of voltage \(V \) is attached across a cylindrical wire of length \(L \), and cross-sectional area \(A \), causing a current \(I \). If I double the area of the resistor (but attach it to the same battery), what happens to the drift velocity of electrons \(v_d \) in the new resistor?

Larger area \(\Rightarrow \) total resistance decreases, current increases.

However, \(E \) does not change (same potential over same length),

\(\Rightarrow \) drift velocity of electrons does not change.
c) How does the resistivity of a cube of conducting material (conductivity \(\sigma \)) change, if we increase its volume by a factor of \(n \)?

\[a = \text{length of side} \Rightarrow V_1 = a^3 \]

\[R_1 = \frac{a}{a^2 \cdot \sigma} = \frac{1}{a \sigma} = \frac{1}{\sqrt[3]{V_1}} \]

\[a_2 = n \cdot a \]

\[R_2 = \frac{V_2}{(n \cdot a)^2 \cdot \sigma} = \frac{1}{n^3} \]

\[R_2 = \frac{(n \cdot a)^2 \cdot \sigma}{n^3} = \frac{1}{na^2} \]

\[\frac{R_2}{R_1} = \frac{a^2}{na^2} = \frac{1}{n}, \quad R_2 = \frac{R_1}{n} \]

\[\Rightarrow R_2 \text{ is smaller by a factor of } n \]
A potential field in free space is given as

$$V(x, z) = \frac{10xz}{2 + x^2}$$

in free space.

a) What is \mathbf{D} at the surface $z = 0$?

$$E = -\mathbf{D} = -10z \cdot \frac{d}{dx} \left(\frac{x}{2 + x^2} \right) \mathbf{a}_x = -\frac{10x}{2 + x^2} \mathbf{a}_x \mathbf{V}_m$$

$$E(z = 0) = -\frac{10x}{2 + x^2} \mathbf{a}_z \mathbf{V}_m$$

$$\mathbf{D}(z = 0) = -\frac{10 \varepsilon_0 x}{2 + x^2} \mathbf{a}_z \frac{C}{m^2}$$

b) Show that the surface ($z = 0$) is an equipotential surface.

$$V(x, z = 0) = 0 \text{ for all } x$$

Also,

$$E(z = 0) \propto \mathbf{a}_z \text{ only } \Rightarrow \text{ always perpendicular to surface}$$

c) If the $z = 0$ surface was a conductor, what would be the total charge on the p surface defined by $0 < x < 2$ and $-3 < y < 0$?

$$\mathbf{S}_S = \mathbf{D} \cdot \mathbf{a}_z \bigg|_{z = 0} = -\frac{10 \varepsilon_0 x}{2 + x^2} \frac{C}{m^2}$$
\[Q = \int_0^2 dx \int_{y=-3}^{y=3} dy \left(- \frac{10 \varepsilon_0 x}{2 + x^2}\right) \]

\[= -3 \cdot 10 \varepsilon_0 \left(\frac{1}{2} \right) \cdot \ln \left(\frac{x^2 + 2}{0} \right) = -15 \varepsilon_0 \left[\ln(6) - \ln(2) \right]
\]

\[= -0.15 \text{ nC} \]
8.) In a cylindrical conductor of radius 2\(\text{mm} \), the current density varies with the distance \(r \) from the axis as

\[
J = 10^3 e^{-400r} \quad \text{A/m}^2
\]

Find the total current \(I \)

\[
I = \int J \, ds = \int J \, ds = \oint_{2\pi r} \, d\phi \oint_0^{0.002} \, dp \cdot 10^3 p \cdot \exp(-400p)
\]

\[
= 2\pi \cdot 10^3 \left[\frac{\exp(-400p)}{(-400)^2} \right]_0^{0.002}
\]

\[
= 7.51 \text{ mA}
\]
Given \(J = 10^3 \text{ sin} \theta \frac{A}{m^2} \), find the current crossing the spherical shell \(r = 0.02 \text{ m} \)

\[
ds^2 = r^2 \text{ sin} \theta \ d\theta \ d\phi \ dr
\]

\(I \) and \(ds \) are both radial

\[
I = \int \int I \ ds = \int \int I \ ds = \int_0^{2\pi} d\phi \int_0^{\pi} d\theta \left(10^3 \text{ sin} \theta \right)^2 \ r^2
\]

\[
= (0.02 \text{ m})^2 \times 10^3 \times 2\pi \times \int_0^{\pi} d\theta \ (\text{ sin} \theta)^2
\]

\[
(\text{ sin} \theta)^2 = \frac{1}{2} \left(1 - \cos(2\theta) \right)
\]

\[
= \frac{1}{2} \left[\theta - \frac{1}{2} \sin(2\theta) \right]_0^{\pi}
\]

\[
= \frac{1}{2} \left[\pi - 0 \right] = \frac{\pi}{2}
\]

\[
I = 3.95 \ A
\]
(b) An infinitely thin circular ring of radius 2m is charged to 10\(\mu \)C. The charge is uniformly distributed around the circular ring.

(a) Find the potential at a point on the symmetry axis at the ring, 5m from the plane of the ring.

\[
V = \int \frac{\rho \, dl}{4\pi \varepsilon_0 R}
\]

Where \(R \) is the distance from each incremental point on the ring and the point where \(V \) is to be determined.

\[
\rho \, dl = \frac{4\pi \times 2 \times 10^{-9} \, C}{2\pi \, \bar{r}} = \frac{40 \times 10^{-9} \, C}{2\pi \times (2m)} = \frac{10^{-8}}{\pi} \, \frac{C}{m}
\]

\[
R = \sqrt{r^2 + 5^2} = \sqrt{29} \, m
\]

\[
dl = r \, d\phi
\]

\[
V = \int d\phi \frac{10^{-8}}{\pi} \frac{\sqrt{29}}{m \cdot 2m} = \frac{66.9 \, V}{4\pi \varepsilon_0 \cdot \sqrt{29} \, m}
\]
b.) Compare with the result when all the charge is at the origin in favor of a point charge.

\[V = \frac{40 \times 10^{-9} \text{ C}}{4 \pi \varepsilon_0 (5 \text{ m})^2} = 72.0 \text{ V} \]