Electric field of a line charge

E.g., charged wire of very small radius along z-axis

Definition: \(P_L := \lim_{\Delta l \to 0} \frac{\Delta Q}{\Delta l} \) line charge density

\[Q = \int P_L \, dl \]

To find best coordinate system ask yourself:
- In which coordinates does the field not vary?
- Which components of the field are zero?

Here, field magnitude independent of \(\phi \) and \(\rho \)

\(\Rightarrow \) Choose cylindrical coordinates

\[dE = \frac{P_L \, dl'}{4 \pi \epsilon_0} \frac{(\mathbf{r} - \mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|^3} \]

where \(\mathbf{r} = y \hat{a}_y = \rho \hat{a}_\rho \)

for this particular selection of \(P \)

\[\mathbf{r}' = 2' \hat{a}_z \]

\[\mathbf{r} - \mathbf{r}' = \rho \hat{a}_\rho - 2' \hat{a}_z \] and \[|\mathbf{r} - \mathbf{r}'| = \sqrt{\rho^2 - 2'^2} \]
\[dE = \frac{P_l \, d\vec{z}'}{4\pi\varepsilon_0} \left(\frac{P_{\vec{r}_p} - \vec{z}' \cdot \vec{a}_z'}{(r^2 + \vec{z}'^2)^{3/2}} \right) \]

Only the \(E_{\vec{z}} \) component is present

\[\Rightarrow \text{simplify to} \quad dE_p = \frac{P_l \, P \, d\vec{z}'}{4\pi\varepsilon_0 \, (r^2 + \vec{z}'^2)^{3/2}} \]

Now sum all small line charge elements:

\[E_p = \lim_{\Delta z' \to 0} \sum_{2=-\infty}^{+\infty} dE_p = \int_{-\infty}^{\infty} dE_p \]

\[E_p = \int_{-\infty}^{\infty} \frac{P_l \cdot P}{4\pi\varepsilon_0 \, (r^2 + \vec{z}'^2)^{3/2}} \, d\vec{z}' \quad \text{from integral table} \]

\[E_p = \frac{P_l}{4\pi\varepsilon_0} \left(\frac{1}{r^2} - \frac{\vec{z}'}{\sqrt{r^2 + \vec{z}'^2}} \right)_{-\infty}^{+\infty} = \frac{P_l}{2\pi\varepsilon_0 \, P} \]

Electric field intensity due to various charge densities:

1. Point charge \(E(r) \sim \frac{1}{r^2} \)

2. Line charge \(E(P) \sim \frac{1}{P} \)

3. Sheet of charge \(E \) is independent of \(r \)

(see book p. 47-45)

We will see later that intensity of light is proportional to \(E^2 \)

\[\Rightarrow \text{for uniform lighting that is independent of distance in intensity, sheet sources are used} \]
Sketches of Fields

e.g. field of line charge as viewed along \(z \)-axis

\[\rightarrow \]

\[q \]

\[\rightarrow \]

(length indicates magnitude of field)

'Stream lines' or 'flux lines'

A small positive test charge placed in this field would be accelerated in the direction of the flux lines passing through this point.

Other example: + and - charge

Electric flux density

Imagine these field lines correspond to an electric flux.

The higher the charge, the more flux lines and the higher the flux.
Fara day experiment

- charge inner sphere with charge +Q
- enclose in outer sphere
- discharge outer sphere

≈) experiment shows that charge on outer sphere is then −Q

Displacement or 'flux' from inner sphere to outer:

\[\Phi = Q \] in Coulombs

Definition of the electric flux density \(\mathbf{D} \):

- magnitude = number of flux lines crossing a surface normal to the lines per surface area
- direction = direction of the flux lines at this point

\[\mathbf{D}(r=a) = \frac{Q}{4\pi a^2} \mathbf{a}_r \quad (\text{inner sphere}) \]
\[\mathbf{D}(r=b) = \frac{Q}{4\pi b^2} \mathbf{a}_r \quad (\text{outer sphere}) \]

For \(a \leq r \leq b \)
\[\mathbf{D}(r) = \frac{Q}{4\pi r^2} \mathbf{a}_r \]

For \(r > b \)
\[\mathbf{D} = 0 \] , no lines outside of outer sphere!
Electric flux density is measured in C/m^2 or "lines per square meter".

(For simplicity we assume that each Coulomb of charge has one electric field line pointing away from it per m^2)

The electric field lines terminate on some equal and opposite charge.

Compare with \[E = \frac{Q}{4\pi \varepsilon_0 r^2} \frac{a}{r} \]

\[\Rightarrow \quad D = \varepsilon_0 E \quad \text{in free space} \]

\[D(r) = \frac{Q}{4\pi \varepsilon_0 r^2} \frac{a}{r} \quad \text{is also applicable if charge is embedded in dielectric} \]

\[Q = D(r) \cdot 4\pi r^2 = \Psi \]

\[\text{Charge} = \text{Flux density} \times \text{Area} = \text{Flux} \]

units: \[C = \frac{C}{m^2} \quad m^2 = C \]

Total flux = total charge contained inside that closed surface.
Gauss's law

"Electric flux passing through any closed surface is equal to the total charge enclosed by that surface."

Elemental surface element \(\Delta S \)

\[\Delta S = \vec{n} \text{ vector normal to surface} \]

\[\hat{\mathbf{n}} \text{ vector tangential to surface} \]

The elemental surface has both a magnitude and direction.
The direction is given by a unit vector \(\hat{n} \) normal to the surface.

Flux crossing \(\Delta S \):

\[
\Delta \Phi = \vec{D}_s \cdot \hat{n} \cdot \Delta S = \vec{D}_s \cdot \cos(\theta) \Delta S = \vec{D}_s \cdot \Delta S
\]

Total flux:

\[
\Phi = \lim_{\Delta S \to 0} \sum \vec{D}_s \cdot \Delta S
\]

\[
= \int \vec{D}_s \cdot dS
\]

closed surface
\[\psi = \oint \mathbf{D}_s \cdot d\mathbf{s} = Q = \text{charge enclosed} \]

\[Q = \int \mathbf{P}_v \, dV = \int \mathbf{P}_l \, dl = \int \mathbf{P}_s \, ds \]

as long as the closed surface contains \(V, S \) or \(L \)

Thus

\[\oint \mathbf{D}_s \, ds = \int \mathbf{P}_v \, dV \quad \text{Gauss's law} \]

(= one of the four Maxwell equations)

Example: charge \(q \) placed at origin

\[d\mathbf{s} = r^2 \sin(\theta) \, d\theta \, d\phi \cdot 2\pi \quad \text{(spherical coordinates)} \]

Total flux through closed spherical surface

\[\Delta \psi = \mathbf{D}_s \cdot d\mathbf{s} \]

\[\psi = \oint \mathbf{D}_s \, ds = \oint \frac{q}{4\pi \epsilon_0 r^2} \, r \cdot 2\pi \sin(\theta) \, d\theta \, d\phi \cdot 2\pi \]

\[= \oint d\phi \, \int_0^\pi (\frac{q}{4\pi \epsilon_0} \sin(\theta)) \]

\[= \frac{q}{4\pi \epsilon_0} \left[\int_0^{2\pi} d\phi \cdot \int_0^\pi \sin(\theta) \, d\theta \right] \cdot \frac{1}{2\pi} \cdot \frac{1}{2\pi} \cdot \int_0^{2\pi} d\phi \cdot \int_0^\pi \sin(\theta) \, d\theta \cdot \sin(\theta) \]

\[= \frac{q}{4\pi \epsilon_0} \left[2\pi \int_0^\pi \sin(\theta) \, d\theta \right] \]

\[= \frac{q}{4\pi \epsilon_0} \left[-\cos(\theta) \right]_0^{\pi} = 2 \]

\[\Rightarrow \psi = q \]
Applications of Gauss's law:

Example 1: point charge Q at origin of spherical coordinates

$$Q = \oint_{\text{sphere}} \mathbf{D}_s \cdot d\mathbf{S}$$

Because \mathbf{D}_s and $d\mathbf{S}$ are always pointed in same direction

$$= D_s \cdot \oint_{\text{sphere}} d\mathbf{S} = D_s \cdot 4\pi r^2$$

$$\Rightarrow D_s = \frac{Q}{4\pi r^2}$$

and thus $\mathbf{E} = \frac{Q}{4\pi \epsilon_0 r^2} \mathbf{a}_r$ and $E = \frac{Q}{4\pi \epsilon_0 r^2} q r$

Example 2: uniform line charge density along z

We know that $|E| = |E(\mathbf{r})|$ only

$|\mathbf{D}| = |\mathbf{D}(\mathbf{r})|$ only

(symmetrical around z-axis)
We choose a cylinder as closed surface

\[Q = \oint \mathbf{D}_s \cdot d\mathbf{s} \]

\[s = \text{cylinder} \]

\[Q = \oint \mathbf{D}_s \cdot d\mathbf{s} + \oint \mathbf{D}_s \cdot d\mathbf{s} + \oint \mathbf{D}_s \cdot d\mathbf{s} \]

side \quad top \quad bottom

\[= D_s \oint s \cdot dS + 0 \cdot \oint s \cdot dS + 0 \cdot \oint s \cdot dS \]

assume \(D_s \) to be constant over surface

\[Q = D_s \oint \frac{L}{2\pi} \int_{\phi=0}^{2\pi} d\phi = D_s \cdot 2\pi P \]

and thus \(D_s = \frac{A}{2\pi P} \)

\[\mathbf{D}_s = \frac{P_L}{2\pi P} \]

\[\mathbf{E}_p = \frac{P_L}{2\pi \varepsilon_0 P} \]

Same as result from Coulomb's law

Example 3: coaxial cable

\[ds = \rho d\phi dz \]

Symmetry: only \(D_s \) present

Choose Gaussian surface: cylinder with \(a < \rho < b \)
\[Q = \oint D_s \cdot dS = \oint \frac{A}{2\pi R^2} \cdot d\phi \cdot dz \cdot dL = D_s \cdot \frac{2\pi R^2 \cdot L}{2\pi R} = \frac{2\pi a L}{2\pi R} \]

\[= \frac{a \cdot Ps}{P} \]

The total charge on the inner conductor is

\[\alpha = Ps \cdot 2\pi a \cdot L \]

\[D_s = \frac{Q}{2\pi R L} \]

\[= \frac{Ps}{2\pi R L} \]

\[= \frac{a \cdot Ps}{P} \]

or

\[D_s = \frac{a \cdot Ps}{P} \]

\[P \] outside the outer cylinder?

All electric field lines that start on the inner cylinder terminate on the outer cylinder.

\[Q_{\text{out}} = -Q_{\text{in}} \]

For \(P > b \):

\[\oint D_s \cdot dS = Q_{\text{outer}} - Q_{\text{inner}} = 0 \]

\[\Rightarrow D_s = 0 \]