Lecture:

Deposition:
Chemical-Vapor Deposition

Prof. Jack W. Judy

Lecture Outline

• Topics:
 – Mechanics of CVD
 – Fundamental Equations
 • Growth Regimes
 • Graphs, Extras
 – Processes
Chemical-Vapor Deposition

![Chemical-Vapor Deposition Diagram]

- Slowest Step Dominates
 - reaction-rate limited process
 - mass-transport limited process

Types of CVD

- **Atmospheric-Pressure**
 Chemical-Vapor Deposition (APCVD)
 - high temperature, not commonly used

- **Low-Pressure**
 Chemical-Vapor Deposition (LPCVD)
 - high temperature (480 to 1200 °C)
 - pressure typically 100 to 300 mtorr
 - commonly used for MEMS & IC fabrication

- **Plasma-Enhanced**
 Chemical-Vapor Deposition (PECVD)
 - plasma used instead of heat to crack molecules
 - lower temperature (~100 to 400 °C)
Modeling CVD

• Reaction occurs at the surface:
 - gas concentrations (N_g) drops to the surface concentration (N_s) across the boundary layer (or stagnant layer) of thickness (d
 - Controlled by the reaction-rate constant (k_s) and the mass transport constant (h_g)

Fluxes J and Growth Rates (v):

$$J_s = k_s N_s$$

$$J_g = \left(\frac{D_g}{d} \right) (N_g - N_s) = h_g (N_g - N_s)$$

$$v = \frac{J_s}{N} = \left[\frac{k_s \cdot h_g}{(k_s + h_g)} \right] \left(\frac{N_g}{N} \right)$$

$$v = k_s \left(\frac{N_g}{N} \right) \text{ limited by???}$$

$$v = h_g \left(\frac{N_g}{N} \right) \text{ limited by???}$$

LPCVD Deposition Rate

• Slowest Step Dominates
 - reaction-rate limited process (which region, A or B?)
 - mass-transport limited process (which region, A or B?)
Acceptance Angle

- When mass-transport limited, the growth rate is dependent on the flux density of gas molecules incident on the surface, which is a function of acceptance angle.

Acceptance Angle and Conformal Films
Surface-Micromachined Sealed Cavities

Molded Polysilicon Microstructures

- HEXSIL
 - width of etched feature determines the composition of the molded feature
Molded Polysilicon Microstructures

- enables 3-D structures with a 2-D process
- helps to bridge the gap between the micro world and the macro word

Polycrystalline Silicon ("Poly")

- grain size depends on deposition temperature
 - hotter deposition leads to larger grain structure
Stress in As-Deposited Films

Wolf and Tauber

LPCVD Systems
CVD Reactors

(a) Barrel reactor
(b) Multiple-wafer parallel-plate reactor
(c) Single-wafer reactor
(d) Hex reactor
(e) Afterglow reactor
(f) Ion beam milling or reactive ion beam etching

PECVD Systems