EE M150: Introduction to Micromachining and MEMS

Lecture:
Chemical Safety, Yield, Clean Room Technology, and Wafer Cleaning Processes

Prof. Jack W. Judy

Lecture Outline

- Readings:
 - Chemical Safety Handbook: 1-46
 - Madou, Chapter 1: 10-14
 - Optional
 - Wolf and Tauber: Chapter 5: 119-148
- Topics:
 - Chemical Safety
 - Contamination
 - Device Yield
 - Clean Room Technology
 - Cleaning Processes
Chemical Safety: NFPA Diamond

- Identification system for chemical and material hazards
- Developed by the National Fire Protection Association
- 4 color-coded quadrants
- Numbers indicate severity: 0 = minimal, 4 = severe
- http://www.orcbs.msu.edu/chemical/nfpa/nfpa.html

NFPA Diamond

- **Blue Quadrant**: Health
 - 0: materials that on exposure during fire conditions would offer no hazard beyond that of an ordinary combustible
 - 1: materials that on exposure would cause irritation but only minor residual injury
 - 2: intense or continued exposure (not chronic) could cause temporary incapacitation or residual injury
 - 3: short exposure could cause serious temporary or residual injury
 - 4: short exposure could cause death or major injury

Gasoline = 1, Formaldehyde = 2, Cyanide = 3, Fluorine = 4
NFPA Diamond

• **Red Quadrant:** Flammability
 - 0: materials that will not burn
 - 1: materials that must be preheated before ignition can occur
 - 2: materials that must be moderately heated or exposed to relatively high ambient temperatures before ignition occurs
 - 3: liquids and solids that can be ignited under almost all ambient temperatures
 - 4: materials that will rapidly or completely vaporize at atmospheric pressure and normal ambient temperature or are readily dispersed in air and will burn easily

 Lubricating Oil = 1, Formic Acid = 2, Gasoline = 3, Propane = 4

NFPA Diamond

• **Yellow Quadrant:** Reactivity
 - 0: materials that are stable even under fire conditions and do not react with water
 - 1: normally stable but become unstable at high temperatures and pressures
 - 2: readily undergo violent chemical changes at elevated temperatures and pressures or react violently with water
 - 3: capable of detonation or explosive decomposition put require a strong initiating source, confined space, or explosive with water
 - 4: readily capable of detonation or explosive decomposition at normal temperatures and pressures

 Zinc = 1, Calcium = 2, Fluorine = 3, Nitroglycerine = 4
NFPA Diamond

- **White Quadrant**: Special
 - **W**: materials that demonstrate unusual water reactivity
 - **OX**: materials that possess oxidizing properties
 - oxidizers spontaneously evolve oxygen at room temperature or with slight heating

![Diagram of NFPA Diamond with Quadrants]

Material Safety Data Sheets

- **MSDS provides safety information**:
 - chemical breakdown (*what it is*)
 - methods of exposure (*how it gets in you*)
 - effects/risk of exposure (*what it does*)
 - permissible air concentration (*how much*)
 - any unusual chronic toxicity
 - flash point, autoignition temperature

- **MSDS is compiled by manufacturer**
 - required for shipping and storage
 - *no standard format*
Why Clean and Be Clean?

- Contamination can
 - ruin devices
 - a single ruined device in a complex circuit or MEMS structure can cause the whole chip to fail
 - leads to a lower yield of good chips per wafer
 - leads to higher costs and lower profits per chip
 - “poison” equipment
 - equipment must be removed from the manufacturing line
 - reduces production throughput and revenue
 - pose a health risk
 - endanger employees, customers, and environment
 - greatly increasing costs, possible litigation, etc...

Types of Contamination

- Particulates
 - Inorganic Dust
 - metallic, silicon, glass, quartz...
 - Organic Dust
 - dried skin, hair, clothing fibers, makeup, bacteria, ...

- Films
 - Residues
 - oil, grease, finger prints, incomplete etch, ...
 - solvent residues (acetone, IPA, ...), photoresist developer residue, inadequate rinsing, water stains, ...
 - Oxides
 - grown by thermal, chemical, or electrochemical processes

- Atomic Contamination
 - Absorbed / Adsorbed Atoms or Ions
 - in / on the films or substrate (Na, K, Ca, Au, Cu, Fe, Ni, Cr, ...)
Sources of Contamination

• Humans
 – cause most of the contamination
 – dirt, oils, etc. tracked into labs on shoe soles
 – bodies continuously exfoliate skin, replace hair, …
 – widespread use of make-up, perfume, hair gels, …
 • spread throughout lab by central air system
 – use of mechanical tweezers
 • scratch and chip wafer edge and surface

• Machines
 – abrasion during automated wafer handling
 – mechanical mechanism wear and lubrication
 – aging plastic and rubber parts

Contamination Induced Problems

• Mobile ions in oxides
 – can change electric fields and voltages at Si surface
 • mostly an issue for MOSFETs (Δ threshold voltage) but also
 exploited for anodic wafer bonding (covered in EE M250A)

• Impurities in silicon
 – act as recombination centers for electron-hole pairs
 and impact carrier concentration / distribution

• Particles on surface or in release etchant
 – create numerous problems during photolithography
 – can jam micromechanical structures

• Unintentional films between layers
 – create open circuits or short circuits between layers
 – impede adhesion between films (release etch)
Effects of Particulates

- Photolithography
 - create defects (cuts or protrusions)

- Microstructures

 ![Feature Size vs Year Graph](image)

Device Yield

- Yield is the fraction of functional parts
- Defect densities D_o
 - n defects on wafer, N chips, chip area A
 - larger die are more likely to be defective
 - might or might not be uniform from wafer to wafer
- Poisson yield (worst case): $Y_{\text{poisson}} = \exp(-D_o \cdot A)$
Impact of Device Yield

- Reduce die size for fixed defect density increase yield
- Consider 25 200-mm wafers/day and profit $1/chip
 - 100% yield = profit of $5M/year
 - 80% yield = loss profit of $1M/year
 - reduce chip size by 2X increases profits by 4X

Clean Room Air Filters

- High Efficiency Particulate Air (HEPA) Filters
 - most common type of clean room air filter
 - high efficiency, low pressure drop, good loading characteristics
 - uses glass fibers in a paper-like medium
 - are rated by their particle retention:
 - A true HEPA-rated filter, by definition, will retain 99.97% of incident particles of with a diameter of 0.3 µm or larger
Clean Room Designs

FIGURE 5
Cleanroom with axial fan units installed sideways connecting the air-supply plenum at the top and the air-return plenum at the bottom.

FIGURE 6
Hallroom-type cleanroom with process and service areas located on the same floor.
Clean Room Classification

- **Temperature** is controlled: 68 to 72 °F
- **Humidity** is controlled: 40 to 46 % RH
- **Room is held at positive pressure to blow dust OUT**
 - 0.1 inch of H₂O (3.6 mpsi) for Class 100, 1000, and 10,000
 - 0.3 to 0.4 inch of H₂O for Class 1 and 10
 - doors open inward, so room pressure closes them shut

- **Biohazard rooms operate at negative pressure to keep bugs IN**

Clean Room Classification

<table>
<thead>
<tr>
<th>Class</th>
<th># 0.5 μm particles per ft³</th>
<th># 5.0 μm particles per ft³</th>
<th>air changes per hour</th>
<th>ceiling filter coverage (%)</th>
<th>air velocity (fpm)</th>
<th>max. vibration (μm/s)</th>
<th>temp. tolerance</th>
<th>RH tolerance</th>
<th>approx. capital cost per ft³</th>
</tr>
</thead>
<tbody>
<tr>
<td>office</td>
<td>12-18</td>
<td>10</td>
<td>3</td>
<td>10</td>
<td>±3 °F</td>
<td>±5%</td>
<td>$10</td>
<td>$50</td>
<td>$350,000</td>
</tr>
<tr>
<td>100,000</td>
<td>100,000</td>
<td>65</td>
<td>30</td>
<td>10</td>
<td>±3 °F</td>
<td>±5%</td>
<td>$200,250</td>
<td>$50</td>
<td>$350,000</td>
</tr>
<tr>
<td>1,000</td>
<td>1,000</td>
<td>65</td>
<td>50</td>
<td>30</td>
<td>±2 °F</td>
<td>±5%</td>
<td>$300,000</td>
<td>$50</td>
<td>$350,000</td>
</tr>
<tr>
<td>100</td>
<td>100</td>
<td>65</td>
<td>50</td>
<td>30</td>
<td>±2 °F</td>
<td>±5%</td>
<td>$3,000</td>
<td>$50</td>
<td>$350,000</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>65</td>
<td>50</td>
<td>25</td>
<td>±0.5 °F</td>
<td>±3%</td>
<td>$3,000</td>
<td>$50</td>
<td>$350,000</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>65</td>
<td>50</td>
<td>25</td>
<td>±0.5 °F</td>
<td>±3%</td>
<td>$3,000</td>
<td>$50</td>
<td>$350,000</td>
</tr>
<tr>
<td>0.5</td>
<td>5</td>
<td>65</td>
<td>50</td>
<td>12.5</td>
<td>±0.1 °F</td>
<td>±1%</td>
<td>$3,000</td>
<td>$50</td>
<td>$350,000</td>
</tr>
</tbody>
</table>
Laminar Flow Benches

- Use HEPA filtering to provide local clean air conditions
 - can drop the Class rating by a factor of 100 in a local area
 - Class 100 laminar bench and in a Class 10,000 Clean Room
- Vertical style used above free standing equipment
- Horizontal style used behind microscopes

Clean Room Clothing

<table>
<thead>
<tr>
<th>CLASS 1</th>
<th>CLASS M 1.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hood</td>
<td></td>
</tr>
<tr>
<td>Hair Cover</td>
<td></td>
</tr>
<tr>
<td>Coverall</td>
<td></td>
</tr>
<tr>
<td>Intersuit</td>
<td></td>
</tr>
<tr>
<td>Boots</td>
<td></td>
</tr>
<tr>
<td>Facial Cover</td>
<td></td>
</tr>
<tr>
<td>Gloves</td>
<td></td>
</tr>
<tr>
<td>Safety Glasses</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CLASS 10</th>
<th>CLASS M 2.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hood</td>
<td></td>
</tr>
<tr>
<td>Hair Cover</td>
<td></td>
</tr>
<tr>
<td>Coverall</td>
<td></td>
</tr>
<tr>
<td>Intersuit</td>
<td></td>
</tr>
<tr>
<td>Boots</td>
<td></td>
</tr>
<tr>
<td>Facial Cover</td>
<td></td>
</tr>
<tr>
<td>Gloves</td>
<td></td>
</tr>
<tr>
<td>Safety Glasses</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CLASS 100</th>
<th>CLASS M 3.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hood</td>
<td></td>
</tr>
<tr>
<td>Hair Cover</td>
<td></td>
</tr>
<tr>
<td>Coverall</td>
<td></td>
</tr>
<tr>
<td>Intersuit</td>
<td></td>
</tr>
<tr>
<td>Boots</td>
<td></td>
</tr>
<tr>
<td>Facial Cover</td>
<td></td>
</tr>
<tr>
<td>Gloves</td>
<td></td>
</tr>
<tr>
<td>Safety Glasses</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CLASS 1,000</th>
<th>CLASS M 4.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hood, Cap or Hair Cover</td>
<td></td>
</tr>
<tr>
<td>Coverall or Frock</td>
<td></td>
</tr>
<tr>
<td>Boots or Footwear</td>
<td></td>
</tr>
<tr>
<td>Facial Cover (Optional)</td>
<td></td>
</tr>
<tr>
<td>Gloves</td>
<td></td>
</tr>
<tr>
<td>Safety Glasses</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CLASS 10,000</th>
<th>CLASS M 5.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frock</td>
<td></td>
</tr>
<tr>
<td>Boots or Footwear</td>
<td></td>
</tr>
<tr>
<td>Facial Cover (Optional)</td>
<td></td>
</tr>
<tr>
<td>Gloves (Optional)</td>
<td></td>
</tr>
<tr>
<td>Safety Glasses</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CLASS 100,000</th>
<th>CLASS M 6.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frock</td>
<td></td>
</tr>
<tr>
<td>Footwear</td>
<td></td>
</tr>
<tr>
<td>Facial Cover (Optional)</td>
<td></td>
</tr>
<tr>
<td>Gloves (Optional)</td>
<td></td>
</tr>
<tr>
<td>Safety Glasses</td>
<td></td>
</tr>
</tbody>
</table>
Gowning Sequence

1. **Intersuit**
 - Needed for cleanest classes

2. **Shoe Cover**
 - May be needed before entering gowning area

3. **Cap**
 - Make sure to Contain ALL hair

4. **Hood**
 - Check for snug fit good face seal

5. **Face Mask**
 - Bend nose piece for a snug facial fit

6. **Coverall**
 - Keep off floor and bench, tuck in hood before zipping

7. **Boots**
 - Put on over the leg of the coverall

8. **Safety Glasses**
 - Remember to put on safety glasses

9. **Gloves**
 - Pull hem of glove over coverall sleeve

Taken from http://www.uniclean.com/technical/gowning-sequence.htm

Clean Room Dos and Don’ts

- **Do:**
 - change gloves whenever dirty or torn
 - use a fresh pair of gloves whenever handling wafers
 - wipe down wafer handling areas with isopropanol
 - use clean room paper and dust-free ball point pens
 - remove all rings and bracelets from fingers and wrists
 - use special lint-free paper and pens or markers

- **Don’t:**
 - touch your face or skin with gloves
 - touch oily machinery or hot elements
 - lean on equipment
 - wear cosmetics, powders, or colognes
 - use normal paper and pencils
Wafer Cleaning

• Clean wafers are needed for high device yield
• Must remove particles, residues, contamination
• Cleaning process must not generate particles

• Semiconductor Industry Association Roadmap:
 – for ICs of 0.25 µm in size:
 • Metal Contamination: 10^9 atoms/cm2
 • Organic Contamination: 10^{14} atoms/cm2
 • Oxide Contamination: 10^{14} atoms/cm2
 • Particle Contamination: 0.2 particles/cm2 (125 nm in size)
 • Surface Roughness: < 0.1 nm

Defect Detection Methods

• Particles:
 – optical microscope: good down to 1-2 µm
 – automated laser and e-beam scanners

• Residues:
 – Synchrotron radiation total-reflection x-ray fluorescence (SR-TXRF)
 • can detect contamination down to 8×10^7 atoms/cm2
Wafer Cleaning Processes

• Remove chemically bonded films
• Vital before high-temperature steps (furnaces)
• Popular cleaning sequence by Kern at RCA (~1960’s)
 – Remove thick organic films
 • immersion in Piranha (5:1 H₂SO₄:H₂O₂) or O₂ plasma
 • rinse in DI water until resistivity is >10 to 18 MΩ-cm
 • optional use of an ultrasonic bath to agitate particles off surfaces
 – Remove residual organics and some metals
 (Standard Clean 1: SC1)
 • 1:1:5 of NH₄OH : H₂O₂ : DI at 75 to 80º for 10 to 15 min, rinse
 – Strip hydrous oxide film formed in prior step
 • 10:1 of HF:H₂O, then a quick rinse (skipped for SiO₂ film)
 – Desorb remaining atomic / ionic contamination
 • 6:1:1 of H₂O:HCl:H₂O₂ at 75 to 80º for 10 to 15 min, rinse
 – Dry wafers with spin dryer

Next Lecture

• Readings for next lecture:
 – Jaeger: 13-28
 – Madou, Chapter 1: 1-10, 13-32, 38-41
 – Optional:
 • Madou: 33-76
 • Wolf and Tauber: Chapter 12: 488-544