Diffusion

Carrier can move via diffusion as well. As in all cases, there is a driving force to move particles from a high concentration region towards a low concentration region.

In general we have the "Fick's law"

\[\text{Flux} = -D \nabla n \]

where \(D \) is called the diffusion constant.

For electrons, current density due to diffusion is given by

\[J_n = (-g) - D_n \nabla n \]

\[= g D_n \nabla n \]

On \(\nu = 1-D \) \(J_n = 8 D_n \frac{\partial n}{\partial x} \)
For hole, the current due to diffusion is:

\[J_p = (+q) \cdot -D_p \nabla p \]

\[= (-q) \cdot D_p \nabla p \]

\[\text{note the sign.} \]

\[J_p = -qD_p \frac{\partial p}{\partial x} \]
When both drift and diffusion exist (i.e. when there is an E-field as well as concentration gradient), the two components sum:

\[J_n = g n \mu_n \mathbf{E} + g D_n \frac{\partial n}{\partial x} \]

\[J_p = g p \mu_p \mathbf{E} - g D_p \frac{\partial p}{\partial x} \]

(Note the signs)

And the total \(J \) is \(J = J_n + J_p \).

In fact, it can be derived from thermal dynamics that:

\[J_n = -g n \mu_n \frac{\mathbf{E} \cdot \mathbf{E}}{2x} \]
(Recall \(E_{\text{Eu}} \) is simply the electrochemical potential of electrons)

But for non-degenerate case

\[
N = N_c e^{-\frac{(E_o - E_F)}{kT}}
\]

\[
\Rightarrow E_o - E_F = kT \ln \frac{N_c}{n}
\]

\[
\Rightarrow E_F = E_o - kT \ln \frac{N_c}{n}
\]

\[
\therefore \frac{2E_{\text{Eu}}}{g} = \frac{1}{\beta} \frac{2E_o}{2k} + \frac{kT}{g} \frac{2\beta n N_c}{n}
\]

Recall \(\varepsilon = \frac{1}{\beta} \frac{2E_o}{2k} \)

And \(\frac{kT}{g} \frac{2 \ln(n N_c)}{2k} = -\frac{kT}{g} n \frac{2n}{n} \frac{2n}{n} \)
Together we have

\[J_n = -\xi n \mu_n \left(-3 - \frac{\hbar n}{8} \frac{2n}{3x} \right) \]

\[= \xi n \mu_n (\Xi + \Phi(x)) \mu_n \frac{2n}{3x} \]

Compared to our expression earlier:

\[J_n = \xi n \mu_n \Xi + \Phi D_n \frac{2n}{3x} \]

We set \(D_n = \frac{\hbar x}{\mu n} \) (Einstein relation)

for non-degenerate semicord.

Similarly, \(\frac{D_p}{\mu p} = \frac{\hbar x}{\xi} \).
Semiconductor carrier statistics in non-equilibrium.

Consider the case that light is shining on a piece of semiconductor. We have the following reaction:

\[\text{light} \rightarrow \text{exciton} \]

i.e. light excites an electron in the valence band into the conduction band, creating an electron-hole pair (often called electron-hole pair).
If the rate of this happening is G_n

\[
\frac{dn}{dt}\bigg|_{\text{gen}} = \frac{dp}{dt}\bigg|_{\text{gen}} = G_n
\]

\[P \downarrow: \text{NP will increase due to } G_n\]

If nothing counteracts this, as $t \to \infty$, $n \to \infty$, $p \to \infty$. Of course this is NOT physical!

There is also a process by which an electron in the conduction band "jumps" to an empty state in the valence band, thus eliminating one and a hole
\[e + h \rightarrow \Phi \]

The rate of this process (c.f. Chem 1) is proportional to \(n \cdot p \) (i.e. \(\Sigma e \Sigma h \Sigma \))

\[R = rnp \]

In fact, under thermal equilibrium

\[G_{\text{he}} = R_{\text{he}} = Rn_0p_0 = Rn^2 \]

Now, how does recombination occur?

(I) Direct recombination

\[\text{Diagram:} \]

\[\text{Diagram:} \]
can happen for direct bandgap semiconductors (i.e. conduction band minimum = valence band maximum are both at \(\mathbf{k} = 0 \)) e.g. GaAs, InP, ...

In this case

\[
R = \tau (n_0 + \Delta n)(p_0 + \Delta p)
\]

\[
= \tau n_0 p_0 + \tau (n_0 \Delta p + p_0 \Delta n) + \tau n_0 \Delta p
\]

Under low-level injection (i.e.

\(\Delta n, \Delta p \ll \) the equilibrium majority carriers.

e.g. \(n \)-type. \((n_0 \gg p_0)\)

\[
R \cong \tau n_0 p_0 + \tau n_0 \Delta p
\]

\[
U = R - G_{th} = \tau n_0 \Delta p = \frac{\Delta p}{\tau}
\]

i.e. \(\tau \), (which is called the lifetime) = \(\frac{1}{n_0} \)
meaning of ε:

Say at $t = 0$ $\Delta p = \Delta p^*$ and the force to generate Δp is removed.

$$\frac{\Delta p}{2\varepsilon} = -U = \frac{\Delta p}{\varepsilon}$$

$$\Rightarrow \Delta p = \Delta p^* e^{-\frac{t}{\varepsilon}}$$

What about non-direct bandgap semiconductors (conduction band minimum, E_c, and valence band maximum E_V at not the same k's)?

e.g. Si, Ge, ...
Direct recombination is not possible to conserve both energy and crystal momentum.

Recombination is via traps, and the theory that describes the recombination is called the SRH theory.

\[\text{trap} \quad a \quad b \quad c \quad d \]

\[a: e^- \text{ capture} \]
\[b: e^- \text{ emission} \]
\[c: h \text{ capture} \]
\[d: \text{hole emission} \]
With SRH theory, the recombination is given by

\[U = \frac{pn - N_i^2}{\tau_p n + \tau_n p} \]

With \(\tau_n, \tau_p \propto \frac{1}{N_t} \)

\(N_t \) is the density of traps.