Problem 1.
Consider the common-emitter amplifier shown in Fig. 1. The transistor has $\beta = 100$ and $V_A = 100 \text{ V}$.

(a) Calculate V_B, V_C, V_E and I_E.

(b) Calculate g_m and r_π.

(c) Find R_{in} and the small-signal voltage gain v_o/v_{sig}.

(d) Find the small-signal current gain i_o/i_i.

Figure 1:

Problem 2.
For the circuit in Fig. 2, find the input resistance R_{in} and the voltage gain v_o/v_{sig}. Assume that the source provides a small signal v_{sig} and that $\beta = 100$.

Figure 2:

Problem 3.
For the emitter-follower circuit shown in Fig. 3, the transistor has $\beta = 100$ and $V_A = \infty$. Find:

(a) I_E, V_E, and V_B.

(b) the input resistance R_{in}.

(c) the voltage gain v_o/v_{sig}.

Figure 3:
Problem 4.
In the circuit shown in Fig. 4, the transistor has a β of 200. What is the dc voltage at the collector? Find the resistances R_{ib} and R_{in} and the small signal voltage gain (v_o/v_{sig}).

Problem 5.
For the emitter-follower in Fig. 5, the signal is directly coupled to the transistor base. If the dc component of v_{sig} is zero, find the dc emitter current. Assume $\beta = 100$. Neglecting r_o, find R_{in}, the voltage gain v_o/v_{sig}, the current gain i_o/i_i, and the output resistance R_{out}.