a) Find an expression for the resonant frequencies of the TEM\(_{0,0}\) modes of the cavity.

A gaussian mode TEM\(_{0,0}\) is sustained by the cavity, with longitudinal phase term given by

\[
\varphi(z) = (kz - \tan^{-1}(z/d_0))
\]

such that at \(z=0\) \(\varphi(0)=0\)

\[
z = d \rightarrow \varphi(d) = kd - \tan^{-1}(d/d_0)
\]

After a round trip, the resonant condition is:

Round Trip Phase Shift = \(q \cdot 2\pi\) = \(2(\varphi(d) - \varphi(0))\) = \(2(kd - \tan^{-1}(d/d_0))\)

\(q\): integer

Thus \(kd - \tan^{-1}(d/d_0) = \pi q \rightarrow \frac{2\pi q}{c} d = \pi q + \tan^{-1}(d/d_0)\)

\(q\): integer

\[\nu_q = q\text{-th resonant frequency} = \frac{c}{2kd} \left(q + \frac{1}{\pi} \tan^{-1}\left(\frac{d}{d_0}\right) \right)\]

Now we need to calculate \(d_0\), and since the radius of curvature of the mirrors must match those of the gaussian beam, we have:

\[R(d) = d \left(1 + \left(\frac{z_0}{d}\right)^2 \right) = R_2 \rightarrow z_0 = d \sqrt{\frac{R_2}{c}} = \frac{3R_2}{c} \frac{1}{V_3}\]

and

\[
\nu_q = \frac{2c}{3R_2} \left(q + \frac{1}{\pi} \tan^{-1}\left(\frac{3R_2}{4} \left(\frac{1}{18} R_2 \right) \right) \right) = \frac{2c}{3R_2} \left(q + \frac{1}{\pi} \tan^{-1}(1/3) \right) = \frac{2c}{3R_2} \left(q + \frac{1}{3} \right)
\]
b) If \(R_2 = 2 \text{m} \) and \(\lambda_0 = 5000 \text{ Å} \) (wavelength region of interest), the free spectral range in MHz and Å units: FSR

\[
\text{FSR} = \frac{2\pi c}{\lambda_0} = \frac{2\pi c}{3R_2} \left(\frac{1}{\lambda_0} + \frac{1}{3} \right) = \frac{2\pi c}{3R_2} \left(\frac{1}{\lambda_0} + \frac{1}{3} \right)
\]

\[
= \frac{2.3 \times 10^8}{3.2} = 100 \text{ MHz}
\]

Using \(\frac{\Delta \lambda}{\lambda_0} = \frac{\Delta \nu}{\nu_0} \), the FSR (Å) = FSR (Hz) \times \frac{\lambda_0}{\nu_0}

\[
\text{FSR (Å)} = \left(\frac{100 \times 10^6}{3 \times 10^8} \right) \frac{5000 \times 10^6}{0.83 \times 10^{-3}} = 0.83 \times 10^3 \text{ Å}
\]

2) Quality factor of the cavity: \(Q \)

\[
Q = \frac{\nu_0}{\Delta \nu/2} = \frac{\nu_0}{\Delta \nu_{1/2}}
\]

since we are interested in the spectral region around \(\nu_0 = c/\lambda_0 \)

and \(\Delta \nu_{1/2} = \frac{\lambda_0}{2c} \left[\frac{1 - \sqrt{T_1^2 + T_2^2}}{1 - \sqrt{T_1^2 T_2^2}} \right]^{1/4} \)

Thus

\[
Q = \frac{\nu_0}{\lambda_0} \left[\frac{1 - \sqrt{T_1^2 + T_2^2}}{1 - \sqrt{T_1^2 T_2^2}} \right]^{1/4} \]

\[
= \frac{2.3 \times 10^8}{3 \times 10^8} \left[\frac{1 - \sqrt{0.99 \times 0.97}}{1 - \sqrt{0.99 \times 0.97}} \right]^{1/4}
\]

\[
= 0.93 \times 10^9
\]

3) Finesse: \(F \)

\[
F = \frac{\text{FSR}}{\Delta \nu_{1/2}}
\]

with \(\Delta \nu_{1/2} = \frac{2\pi c}{3R_2} \left(\frac{1 - \sqrt{0.99 \times 0.97}}{1 - \sqrt{0.99 \times 0.97}} \right)^{1/4} = 0.645 \text{ MHz} \)

Thus

\[
F = \frac{100 \text{ MHz}}{0.645 \text{ MHz}} = 155.1
\]
4) Photon lifetime: \(T_p \)

\[
T_p = \frac{\text{Round trip}}{1 - S}
\]

where \(S = \text{survival factor after one round trip} \)

Reflectivity: \(T_1^2 = 0.99 \), \(T_2^2 = 0.97 \)

After one round trip the survival factor for this cavity is

\[
S = T_1^2 T_2^2
\]

\[
T_p = \frac{2 d / c}{1 - T_1^2 T_2^2} = \frac{3}{1 - (0.99 \times 0.97)} = 251.84 \text{ ns}
\]

\[6.2\]

\[R_1 = 0.99 \]

\[R_3 = 0.99 \]

\[R_2 = 0.99 \]

where \(R_i \) refers to the reflecting in this problem, that is

\[R_i = T_i^2 \]

what is the photon lifetime?

Round trip time = \(T_{RT} = \frac{2 (d_1 + d_2)}{c} = \frac{3 \text{m}}{3 \times 10^8 \text{m/s}} = 10 \text{ nsec} \)

Survival factor = \(R_1 R_3 R_2 R_1 \)

\[
T_p = \frac{T_{RT}}{1 - R_1 R_3 R_2 R_1} = \frac{10 \text{ nsec}}{1 - (0.99)^3 \times 0.9} = 78.9 \text{ nsec}
\]

\[6.3\] what is the cavity \(Q \)? (Assuming the wavelength region of interest is 5000 Å)

Given the photon life-time, from equation (6.4.5): \(\Delta \omega / \omega = \frac{1}{T_p} \)
and from equation (6.3.5)

\[Q = \frac{V_1}{\Delta V_2} = \frac{(C/\Delta V_2)}{2\pi \frac{\Delta V_2}{2\pi}} = \frac{C \cdot 2\pi}{\Delta V_2} = \frac{(3 \times 10^8)(78.9 \times 10^{-9})}{5000 \times 10^{-10}} \]

\[Q = 2.97 \times 10^8 \]

6.4. If path 3 has a transmission coefficient \(T_3 = 0.85 \), then:

\[d_2 = 0.5 \text{m} \]

a) Photon lifetime:

The survival factor now becomes: \(S = T_4 \cdot R_1 \cdot R_2 \cdot R_3 \cdot R_4 \)

Thus,

\[T_P = \frac{T_{\text{TOT}}}{1 - S} = \frac{10 \text{ nsec}}{1 - 0.99 \times 0.9 \times 0.85} = 338 \text{ nsec} \]

b) Suppose path 4 had a power gain of \(G_4 = 1.1 \). What is the new photon lifetime?

\[T_4 = G_4 = 1.1 \quad \Rightarrow \quad T_P = \frac{10 \text{ nsec}}{1 - (0.99)^3 \times 0.9 \times 1.1} = 253.7 \text{ nsec} \]

c) If we blindly plug into the formulas, \(T_P \) becomes negative for \(G \) sufficiently large. What is the meaning of this apparent absurdity?

If \(T_P < 0 \) then the rate of change of photons with time in the cavity is positive:

\[\frac{dN_P}{dt} = \frac{N_P}{T_P} = \frac{N_P}{|T_P|} > 0 \]

which indicates that the number of photons is growing with time.
6.5 The optical cavity of the diagram is excited by a variable-frequency source, and the detected intensity is as shown:

![Intensity diagram](image)

What is the nominal wavelength?

Since $\text{FSR} = 125 \times 10^6 \text{ Hz} << \nu_0 = 5 \times 10^{14} \text{ Hz}$, the resonant frequencies are close enough to each other to take the nominal frequency as $\nu_0 \approx \nu_0 = 5 \times 10^{14} \text{ Hz}$ so the nominal wavelength: $\lambda_0 = c/\nu_0 = 0.6 \text{ \mu m}$

6.6 How long is the cavity?

From $\text{FSR} = \frac{c/(n \cdot \lambda_0)}{2d}$ with $n = 1$ (refractive index) for free space

$$125 \text{ MHz} = \frac{3 \times 10^8 \text{ m/s}}{2d} \Rightarrow d = 1.2 \text{ m}$$

6.7 Finesse? From the graph: $\Delta \nu_1/2 = 2.5 \text{ MHz}$

$$F = \frac{\text{FSR}}{\Delta \nu_1/2} = \frac{125 \text{ MHz}}{2.5 \times 10^6} = 50$$

6.8 What is Q?

$$Q = \frac{\nu_0}{\Delta \nu_1/2} = \frac{5 \times 10^{14}}{2.5 \times 10^6} = 0.2 \times 10^8$$

6.9 What is the photon lifetime?

Using $\tau_p \cdot \Delta \nu_1/2 = 1 \Rightarrow \tau_p = \frac{1}{2 \pi \Delta \nu_1/2} = 63.6 \text{ nsec}$

$$\tau_p = \frac{2d/c}{1 - R_1 R_2} \Rightarrow R_1 R_2 = 0.874$$

$$G^2 R_1 R_2 = 1 \Rightarrow G = 1.069$$
6.11) Given the following cavity and a nominal wavelength: \(\lambda_0 = 0.6328 \mu m \)

\[
\begin{align*}
T_1^2 &= R_1 = 0.985 \\
d &= 50 cm \\
T_2^2 &= R_2 = 0.97 \\
T_3^2 &= R_3 = 0.97
\end{align*}
\]

Scattering from lens surface = 1%/pass

On each of the lens surfaces there is a 1% intensity loss and a 99% transmission. The transmission coefficient is therefore:

\[T_{\text{surface}} = (1 - 0.01) = 0.99 \text{ through each surface} \]

\[T_{\text{total}} = (0.99)^2 \text{ through the lens} \]

a) Photon lifetime:

round trip time = \(\frac{3d}{c} = 5 \text{ nsec} \)

survival factor = \(R_1 R_2 R_3 T_{\text{total}} \)

\[T_p = \frac{T_{\text{total}}}{1 - 5} = \frac{5 \text{ nsec}}{1 - (0.97)^3} = 0.985 \times (0.99)^2 = 54.55 \text{ nsec} \]

b) Cavity Q?

From \(Q = \frac{\lambda_0}{\Delta \lambda} = \frac{c}{\lambda_0} \times T_p = \frac{3 \times 10^8}{0.6328 \times 10^{-6} 	imes 2 \times (54.55 \times 10^{-9})} = 1.62 \times 10^8 \)

NOTE: THAT THE RESULTS PROVIDED IN THE

TEXT BOOK ARE WRONG.
Drawn to scale on the graph below is the relative power transmission through a Fabry-Perot cavity, when the distance \(d_0 \) is increased slightly. The source is a He:Ne laser at \(\lambda_0 = 6328 \) Å.

Dimensions measured on the graph:
- \(\delta d = 3.1 \) cm
- \(\Delta d \frac{1}{2} = 0.5 \) cm

a) What is the distance \(d_0 \)?

Resonance occurs when
\[
\frac{d}{d_0} = \frac{1}{2}
\]
Thus if \(d_0 = \frac{1}{2} \Delta d \), then
\[
(d_0 + \delta d) = (\frac{1}{2} + 1) \frac{1}{2} = \frac{3}{2}
\]
and
\[
\delta d = \text{separation distance} = \frac{\Delta d}{2} = 3164 \text{ Å}
\]

The graph is drawn on scale, and when measured on the graph, the distance \(\delta d = 3.1 \) cm, thus the ratio at which the graph has been drawn is given by:

\[
\text{Ratio} = \frac{3164 \text{ Å}}{3.1 \text{ cm}} = 1.02 \times 10^{-5}
\]

b) What is the finesse of the cavity?

Tuning of the cavity is being done by adjusting the separation \(d \) between the mirrors. The transmitted intensity is given as a function of \(d \), so we need to determine the cavity parameters in terms of \(d_0 \) (separation distance between resonances) and \(\Delta d \frac{1}{2} \) (FWHM).

\[
V_\lambda = \frac{q}{2d_0} \rightarrow \Delta V_\lambda = \frac{q}{2} \left(\frac{\Delta d}{d_0^2} \right) \quad \text{and} \quad \Delta V_\lambda = \frac{V_\lambda}{2} \Delta d_0 \quad \text{or} \quad \frac{\Delta V_\lambda}{V_\lambda} = \frac{\Delta d_0}{d_0}
\]
Now: \[\text{Finesse} = \frac{\text{FSR (Hz)}}{\Delta v} = \frac{\text{FSR} \cdot \Delta d_2}{\nu_0} = \frac{\text{FSR} \cdot \Delta d_2}{(9 \cdot \text{FSR})} = \frac{5d}{\Delta d_2} \]

where we used: \[\frac{\Delta d}{\nu} = \frac{5d}{9} \text{ and } \nu_0 = 9 \cdot \text{FSR} \]

Thus \[F = \frac{5d}{\Delta d_2} = \frac{3.4 \text{ cm} \times \text{Ratio}}{0.5 \text{ cm} \times \text{Ratio}} = 6.2 \]

(c) What is the cavity Q?

Similarly \[Q = \frac{\nu_0}{\Delta v} = \frac{\nu_0}{\Delta d_2} = \frac{3.4 \text{ cm}}{0.5 \text{ cm} \times \text{Ratio}} = \frac{6.8 \times 10^{-2}}{5.1 \times 10^{-8}} = 0.196 \times 10^6 \]

6.13 Drawn to scale on the graph below is the relative power transmitted through the cavity as the distance d is increased from its initial value of 2 cm to 2 cm + 0.5 cm. The source is a single-mode laser of wavelength \(\lambda_0 \).

![Graph showing relative power transmission through the cavity with dimensions and ratios indicated.]

- Dimension on the graph = 6.8 cm
- Real dimension = 0.4 \(\mu \)m
 \[\text{Ratio} = \frac{0.4 \times 10^{-6}}{6.8 \times 10^{-2}} = 5.88 \times 10^{-6} \]

The scaled distance 0.4 \(\mu \)m on the graph corresponds to 6.8 cm if we measure d. The ratio between the real and the measured dimensions is 5.88 \times 10^{-6}.

(a) Wavelength of the source?

Resonance occurs when \(d_0 = \frac{\lambda}{2} \), thus \(5d = \frac{\lambda}{2} \)

On the graph \(5d = 5.5 \text{ cm} \), then \(5d = 5.5 \text{ cm} \times \text{Ratio} = 0.3234 \mu \text{m} = \frac{\lambda}{2} \)

\[\lambda = 0.6468 \mu \text{m} \]
b) **Finesse?**

The measured width Δy_2 on the graph at the points where the intensity is $\frac{I_{\text{max}}}{2}$ is 0.9 cm. Then

$$\text{Finesse} = \frac{\Delta d_f}{\Delta y_2} = \frac{5.5 \text{ cm} \times \text{Ratio}}{0.9 \text{ cm} \times \text{Ratio}} = 6.11$$

d) **FWHM in MHz?**

$$\text{Finesse} = \frac{\text{FSR(Hz)}}{\Delta y_2} = \frac{c}{\lambda d_{fo}} \Rightarrow \Delta y_2 = \frac{c}{2d_{fo} F} = \frac{9 \times 10^8}{2 \times 2 \times 10^{-2} \times 6.11} = 1227.5 \text{ MHz}$$

c) **Q?**

$$Q = \frac{\nu_0}{\Delta y_2} = \frac{c/\lambda_{fo}}{\Delta y_2} = \frac{9 \times 10^8 / (0.6468 \times 10^{-6})}{1227.5 \times 10^6} = 3.778 \times 10^5$$

e) **τ_p?**

$$\tau_p \cdot \Delta \omega_2 = \tau_p \cdot 2\pi \cdot \Delta y_2 = 1$$

$$\Rightarrow \tau_p = \frac{1}{2\pi \cdot 1227.5 \times 10^6} = 0.1296 \text{ nsec}$$