I. Spreading of an EM beam (Sec. 1.6 8.1.7)

Uncertainty principle

\[\Delta w \Delta t \geq \frac{\hbar}{2} \Rightarrow \Delta E \Delta t \geq \frac{\hbar}{2} \text{ or } \frac{\hbar}{4\pi} \]

\[\Delta k_x \Delta x \geq \frac{\hbar}{2} \]

\(\uparrow \)

Conjugate variables

Gaussian beam

\[E(y) = E_0 \exp \left[-\left(\frac{y}{w_0} \right)^2 \right] \]

Fourier transform.

\[F(k_y) = \int_{-\infty}^{\infty} f(y) e^{ik_y y} \, dy. \]

So

\[E(k_y) = \int_{-\infty}^{\infty} E_0 \exp \left[-\left(\frac{y}{w_0} \right)^2 \right] e^{ik_y y} \, dy \]

\[= E_0 \int_{-\infty}^{\infty} \exp \left[-\left(\frac{y^2}{w_0^2} \right) + iky \right] \, dy. \]

\[= E_0 \int_{-\infty}^{\infty} \exp \left[-\frac{1}{w_0^2} \left(y^2 - ikyw_0^2 - \frac{1}{2} k^2 w_0^4 \right) \right] \exp \left(\frac{-kyw_0^2}{2} \right) \, dy \]

\[= E_0 \int_{-\infty}^{\infty} \exp \left[- \left(\frac{y - ikyw_0^2}{w_0} \right)^2 \right] \, dy \left(\exp \left(\frac{-kyw_0^2}{2} \right) \right) \]

\[= E_0 \exp \left[- \left(\frac{kyw_0^2}{2} \right)^2 \right] \int_{-\infty}^{\infty} \exp \left[- \left(\frac{y - ikyw_0^2}{w_0} \right)^2 \right] \, dy \]
\[\text{let } x = \frac{y - ikw_0^2}{2w_0} \]

\[\Rightarrow dx = \frac{1}{w_0} \, dy \Rightarrow dy = w_0 \, dx \]

\[E(k_y) = E_0 \exp \left[-\left(\frac{kyw_0}{2} \right)^2 \right] \int_{-\infty}^{\infty} e^{-x^2} \cdot w_0 \, dx \]

\[= E_0 w_0 \exp \left[-\left(\frac{kyw_0}{2} \right)^2 \right] \int_{-\infty}^{\infty} e^{-x^2} \, dx \]

\[= \sqrt{\pi} \cdot \frac{1}{w_0} \]

\[\Rightarrow E(k_y) = E_0 \sqrt{\pi} w_0 \exp \left[-\left(\frac{kyw_0}{2} \right)^2 \right] \]

\[\text{Normalized} \]

\[\text{E} \]

\[w_0 \]

\[\frac{1}{2} \]

\[y \]

\[\text{Normalized} \]

\[\text{E} \]

\[\frac{1}{2} \]

\[k_y \]

\[\frac{1}{w_0} \]

\[\text{Note:} \]

\[\int_{-\infty}^{\infty} e^{-x^2} \, dx \]

\[= \int \int_{-\infty}^{\infty} e^{-x^2} \, dx \cdot \int_{-\infty}^{\infty} e^{-y^2} \, dy \]

\[= \int \int_{-\infty}^{\infty} e^{-(x^2+y^2)} \, dx \, dy \]

\[= \int \int_{\theta=0}^{\pi} \int_{r=0}^{\infty} e^{-r^2} \, r \, dr \, d\theta \]

\[= \int_{\theta=0}^{\pi} \left[\frac{1}{2} e^{-r^2} \right]_{r=0}^{r=\infty} \, d\theta \]

\[= \sqrt{\pi} \]
\[\frac{\theta_0}{2} \approx \tan \frac{\theta_0}{2} = \frac{\Delta k_y}{k_z} = \frac{2}{w_0} \cdot \frac{\lambda}{2\pi} = \frac{\lambda}{w_0\pi} \]

\[\theta_0 = \frac{2\lambda}{w_0\pi} \]
Beam spread angle

\[\theta_0 \propto \lambda \text{ and } \theta_0 \propto \frac{1}{w_0} \]

II. Problem 1.5

<table>
<thead>
<tr>
<th>Source</th>
<th>eV</th>
<th>(\lambda (\text{Å}))</th>
<th>(\lambda (\text{nm}))</th>
<th>(\nu (\text{Hz}))</th>
<th>(\overline{\nu} (\text{cm}^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>GaAs</td>
<td>1.47</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

photon energy = \(h \nu = 6.626 \times 10^{-34} \times \nu \)
\((\text{J} \cdot \text{s})\)
\((\text{s}^{-1})\)

\[\nu = 4.136 \times 10^{15} \times \nu \]
\((\text{eV} \cdot \text{s})\)
\((\text{s}^{-1})\)

\[\nu = \frac{1.47}{4.136 \times 10^{15}} = 3.554 \times 10^{14} \text{ (Hz)} \]

\[\lambda = \frac{c}{\nu} = \frac{2 \times 10^8}{3.554 \times 10^{14}} = 8.441 \times 10^{-7} \text{ (m)} \]

\[= 8.441 \times 10^3 \text{ (Å)} \]

\[= 8.441 \times 10^2 \text{ (nm)} \]

\[\overline{\nu} = \frac{1}{\lambda} = \frac{1}{8.441 \times 10^{-7} \times 10^2} = 1.18 \times 10^4 \text{ (cm}^{-1}) \]
A sinusoidal wave in time

\[f(t) = \cos(\omega t) \]

phase \(\phi \)

\[T \]

\[0 \]

\[2\pi \]

\[\omega = \frac{2\pi}{T} \]

A sinusoidal wave in space

\[f(z) = \cos(\kappa z) \]

phase \(\phi \)

\[\lambda \]

\[0 \]

\[2\pi \]

\[k = \frac{2\pi}{\lambda} \]

An EM wave is a sinusoidal in space and time

\[E(\mathbf{r}, t) = E_0 \cos \left(\omega t - \mathbf{k} \cdot \mathbf{r} \right) \]

amplitude phase

\[= \text{Re} \left\{ E_0 \exp \left[j(\omega t - \mathbf{k} \cdot \mathbf{r}) \right] \right\} \]

\[= \frac{E_0}{2} \left\{ \exp \left[j(\omega t - \mathbf{k} \cdot \mathbf{r}) \right] + \text{c.c.} \right\} \]

"Wavefront" is the surface defined by the locus of points that have constant phase. In free space, \(|\mathbf{k}| = \frac{2\pi}{\lambda} = \frac{\omega}{c} \)

Direction of \(\mathbf{k} \) is \(\perp \) to wavefronts
Michelson interferometer

\[E_1 = \frac{E_0}{jz} \exp \left[-j \left(k \cos \frac{\theta}{2} \frac{z}{2} + k \sin \frac{\theta}{2} \frac{x}{2} \right) \right] \exp(-jzL_1) \exp(-j\Delta \phi) \]

\[E_2 = \frac{E_0}{jz} \exp \left[-j \left(k \cos \frac{\theta}{2} \frac{z}{2} - k \sin \frac{\theta}{2} \frac{x}{2} \right) \right] \exp(-jzL_2) \]

\[I = 2 \left(\frac{E_0^2}{220} \right) \cos^2 \left[\frac{k \Theta x}{2} + k (L_2 - L_1) + \frac{\Delta \phi}{2} \right] \]

If \(\Delta \phi \) is constant, there are clear bright and dark fringes.

If \(\frac{d\Delta \phi}{dt} \) is large, the fringes would get averaged out and become less visible.

If \(\frac{d\Delta \phi}{dt} = 10^{-5} \omega = 10^{-5} \frac{2\pi c}{\lambda} \)

For \(\frac{\Delta \phi}{2} = \frac{\pi}{2} \Rightarrow \Delta \phi = \frac{d\phi}{dt} \cdot \text{coherence time} = 10^{-5} \frac{2\pi c}{\lambda} \times \frac{2(L_2 - L_1)}{c} = \pi \)

\(\Rightarrow L_2 - L_1 = 10^5 \times \frac{\lambda}{4} \) coherence length