100pts, 110minutes

Your Name:

Your ID Number:

<table>
<thead>
<tr>
<th>PROBLEM</th>
<th>SCORE</th>
<th>POSSIBLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>100</td>
</tr>
</tbody>
</table>
1) (15 points) Find the Fourier transform of the periodic function \(f(t) \) below.
2) (15 points) Determine the range of values of x for which the integral below will be zero.

\[\int_{-\infty}^{\infty} \cos\left(\frac{2\pi xu}{\pi u} \right) \sin(\pi u) \, du \]
3) (30 points total)

Consider the two message signals $m_1(t)$ and $m_2(t)$ with Fourier transforms shown below.

Suppose that $m_1(t)$ and $m_2(t)$ are passed through the modulation system pictured below.
3) (Continued)

a) Provide a clearly labeled plot of $S(f)$, the Fourier transform of $s(t)$. (10 points)
3) (Continued)

Now suppose that $s(t)$ is applied to the following system:

\[
\begin{align*}
\cos(2\pi f_0 t) & \quad \rightarrow \quad y_1(t) \\
\sin(2 * 2\pi f_0 t) & \quad \rightarrow \quad y_2(t)
\end{align*}
\]

b) Provide a clearly labeled plot of $Y_1(f)$, the Fourier transform of $y_1(t)$. (10 points)
3) (Continued)

c) Provide a clearly labeled plot of $Y_d(f)$, the Fourier transform of $y_d(t)$. (10 points)
4) (20 points total)
Consider a random process that has two possible realizations as shown below.
Realization A occurs with probability \(p \). Realization B occurs with probability \(1-p \). Both realizations are periodic.

a) Find an expression for \(E[X(t)] \) valid for the range \(0 \leq t \leq 1 \). Note that this is NOT asking for a time average over the interval \([0,1]\). Your answer should allow evaluation, at any chosen value of \(t \) in that range, of the expected value of the process at that chosen time. (10 points)
4) (Continued)

b) Are there any values of p for which this process is stationary in the mean?
 If so, specify those values. If not, explain why not. (5 points)

c) Evaluate the autocorrelation $R(t_1, t_2)$ for $t_1 = 0, t_2 = .5$ (5 points)
5) (20 points total) Consider the matched filter setup shown below:

The impulse response of $g(t)$ is as follows:

$$g(t) = \begin{cases}
2 & 0 \leq t \leq T/2 \\
1 & T/2 < t \leq T \\
0 & \text{otherwise}
\end{cases}$$

a) Find and sketch $h(t)$, the impulse response of the matched filter, corresponding to $y(t)$. (10 points)
5) (Continued)

b) Clearly sketch and label the output, \(y(t) \), of the matched filter as a function of time.
(10 points)