Design a general purpose silicon n-p-n transistor with the following specifications. Assume that you can alter the minority carrier life time to any specific design value between 100 μsec and 0.1 μsec. Give the rationale of your design concisely and show that the specifications are expected to be met.

(Note: there is no unique design)

1) Maximum ratings
 a) Collector-emitter breakdown voltage: $BV_{CEO} \geq 30V$
 b) Collector-base breakdown voltage: $BV_{CBO} \geq 60V$
 c) Collector current: 800mA
 d) Total power dissipation: 1 Watt

2) Electrical characteristics (at 25°C unless otherwise noted)
 a) DC current gain: 100-300 for $I_C = 150mA, V_{CE} = 10V$
 b) Current gain-bandwidth product: $f_T \geq 300 MHz$
 c) Small signal current gain: $\beta \geq 50$ for $I_C = 1mA (dc), V_{CE} = 10V (dc), f = 1kHz$
 d) Switching characteristics: ($V_{CC} = 30V, I_C = 150mA, I_B = 15mA$)
 i) Turn-on time: $t_t \leq 30ns$
 ii) Storage time: $t_s \leq 700ns$
FIGURE 2.18. Minority-carrier (a) mobilities, (b) lifetimes, and (c) diffusion lengths as a function of doping concentration, calculated using the empirical equations (2.115) to (2.118).