1) I have a MOSCAP with an N-substrate. I apply a gate voltage \(V_G \) to bend the bands to the onset of strong inversion.

 a) Is \(V_G \) positive or negative?

 b) If the substrate doping is changed from \(1 \times 10^{15} \text{ cm}^{-3} \) to \(1 \times 10^{16} \text{ cm}^{-3} \), does \(V_G \) change in order to keep the bands at the onset of strong inversion?

2) I have two MOSCAPS

 1) \(\text{Fox} = 500 \text{ A} \), \(\text{Na} = 5 \times 10^{15} \text{ cm}^{-3} \)

 2) \(\text{Fox} = 100 \text{ A} \), \(\text{Nd} = 1 \times 10^{15} \text{ cm}^{-3} \)

 a) Would one of these have a higher threshold voltage \((V_{TH})\)?

 b) Which has a larger drop across the oxide \((V_{OX})\)?
3). I require a certain V_{G} to bend the bands to intrinsic condition. Do I "simply" double the V_{G} to bring the bands to the onset of strong inversion?

4). Why is the oxide an insulator?

5). For the MOSCAP, I have a V_{G}. One side is connected to the gate and the other to ground. Do we have a complete circuit? Did I forget to state something else?

6). Sometimes it can be an advantage to lower the threshold voltage (V_{th}). We can decrease the oxide thickness (t_{ox}). To do this, can you name one trade-off?