Mutually Coupled Inductors

\[N_1 \text{ and } N_2 \text{ are number of turns in coils 1 and 2.} \]
\[\text{Current } i_1 \text{ in coil 1 produces magnetic flux } \phi_{11} \text{ in coil 1:} \]
\[\phi_{11}(t) = P_{11} N_1 i_1(t), \]
where \(P_{11} \) is proportionality constant.

Some of flux \(\phi_{11} \) will generate flux \(\phi_{21} \) in nearby coil 2:
\[\phi_{21}(t) = P_{21} N_1 i_1(t). \]

Similarly, current \(i_2 \) in coil 2 will generate flux in both coils:
\[\phi_{12}(t) = P_{12} N_2 i_2(t), \]
\[\phi_{22}(t) = P_{22} N_2 i_2(t). \]

For linear elements, \(P_{12} \) must equal \(P_{21} \).

Total flux in coil 1 = \(\phi_1 = \phi_{11} + \phi_{12} \).
Total flux in coil 2 = \(\phi_2 = \phi_{21} + \phi_{22} \).

Faraday’s Law:
\[v(t) = N \frac{d\phi(t)}{dt} \]
so,
\[v_1(t) = N_1 [P_{11} N_1 di_1/dt + P_{12} N_2 di_2/dt], \]
\[v_2(t) = N_2 [P_{12} N_1 di_1/dt + P_{22} N_2 di_2/dt]. \]
Define:
\[L_1 = P_{11} N_1^2 \text{ (self-inductance of coil 1)} \]
\[L_2 = P_{22} N_2^2 \text{ (self-inductance of coil 2)} \]
And
\[M = P_{12} N_1 N_2 \text{ (mutual inductance)} \]
Then
\[v_1(t) = L_1 di_1/dt + M di_2/dt, \]
\[v_2(t) = M di_1/dt + L_2 di_2/dt. \]

Sign of mutual inductance term depends on whether fluxes add or subtract.

Dot convention

Both currents into or out of dots, fluxes add \(\rightarrow \) sign of \(M \) is positive.
One current into dot, other current out of dot, fluxes subtract \(\rightarrow \) sign of \(M \) is negative.
If currents are always defined into dots, voltages always defined with plus at dot, then mutual inductance term has positive coefficient.

Sinusoidal Signals

Use phasor convention:
\[v(t) = V e^{j\omega t}. \]
\[i(t) = I e^{j\omega t}. \]
then,
\[V_1 e^{j\omega t} = L_1 \frac{d(I_1 e^{j\omega t})}{dt} + M \frac{d(I_2 e^{j\omega t})}{dt}, \]
\[V_2 e^{j\omega t} = M \frac{d(I_1 e^{j\omega t})}{dt} + L_2 \frac{d(I_2 e^{j\omega t})}{dt}. \]
So
\[V_1 = j\omega L_1 I_1 + j\omega M I_2, \]
\[V_2 = j\omega M I_1 + j\omega L_2 I_2. \]
where \(L_1 \geq 0, L_2 \geq 0, M \geq 0. \)

Example 4.1 Mutual inductance.
Find current in coil 2:
Always use mesh method for mutual inductance problems.
In coil 1: \(I_1 = I_A - I_B \)
In coil 2: \(I_2 = I_B \)
Define voltages across coils, positive at dots:

\[V_1 = j\omega L_1 I_1 + j\omega M I_2 = j1 (I_A - I_B) + j1 I_B. \]
\[V_2 = j\omega M I_1 + j\omega L_2 I_2 = j1 (I_A - I_B) + j2 I_B. \]

KVL:
Loop 1:
\[V_S = 2 I_A + j1 (I_A - I_B) + j1 I_B + (I_A - I_B) \]
Loop 2:
\[0 = (I_A - I_B) + j1 (I_A - I_B) + j1 (I_A - I_B) - j2 I_B - 3 I_B. \]
Combining:
\[V_S = (3 + j1) I_A - I_B \]
\[0 = I_A - (4 + j1) I_B. \]

2 equations, 2 unknowns. Substitute:
\[I_A = (4 + j1) I_B. \]

Then
\[V_S = (3 + j1) (4 + j1) I_B - I_B = (12 + j4 + j3 - 1) I_B = (11 + j7) I_B. \]

So
\[I_B = V_S / (11 + j7) \]

END EXAMPLE 4.1.

Energy in Coupled Inductors

Total energy stored in inductors \(W(t) = \int_{-\infty}^{t} p(\tau) \, d\tau \)

Assume currents increase from 0 to \(i_1, i_2 \) in inductors 1 and 2.

Instantaneous power \(p(t) = i_1 v_1 + i_2 v_2. \)

Then
\[W(t) = \int_{-\infty}^{t} p(\tau) \, d\tau = \int_{-\infty}^{t} (i_1 v_1 + i_2 v_2) \, d\tau = \int_{-\infty}^{t} (i_1 L_1 di_1/d\tau + i_1 M di_2/d\tau + i_2 M di_1/d\tau + i_2 L_2 di_2) \, d\tau = \int_{-\infty}^{t} (L_1 i_1 + M d(i_1 i_2) + L_2 i_2) \, d\tau = 0.5 L_1 i_1^2 + M i_1 i_2 + 0.5 L_2 i_2^2. \]

assuming currents are 0 at \(-\infty\).

Find minimum energy in coils for given value of \(i_1. \)
\[dW/di_2 = 0 = L_2 i_2 + M i_1. \]

So
\[i_2 = - (M / L_2) i_1. \]

Substitute in \(W: \)
\[W_{\text{min}} = 0.5 L_1 i_1^2 - M i_1 (M / L_2) i_1 + 0.5 L_2 ((M / L_2) i_1)^2 = 0.5 L_1 i_1^2 - (M^2 / L_2) i_1^2 + 0.5 (M^2 / L_2) i_1^2 = i_1^2 (0.5 L_1 - 0.5 (M^2 / L_2)). \]

Since minimum energy must be \(\geq 0, \)
\[L_1 - (M^2 / L_2) \geq 0, \]
Or
\[M \leq \sqrt{L_1 L_2}. \]

Coefficient of coupling

Define
\[k = M / \sqrt{L_1 L_2} \]

so
0 \leq k \leq 1.

k = 0: No coupling.
k = 1: Perfect coupling.

Example 4.2. Coefficient of coupling.
If \(L_1 = 10 \text{ mH}, M = 6 \text{ mH}, k = 1 \), find \(L_2 \).
\[
L_2 = \frac{M^2}{(L_1 k^2)} = \frac{36}{10} = 3.6 \text{ mH}.
\]
END EXAMPLE 4.2.

Models for Mutual Inductance.
Model 1: (always correct)
\[
V_1 = j\omega L_1 I_1 + j\omega M I_2,
V_2 = j\omega M I_1 + j\omega L_2 I_2.
\]

Model 2:
If bottoms of inductors are shorted:
\[
V_1 = j\omega L_A I_1 + j\omega L_C (I_1 + I_2)
= j\omega (L_A + L_C) I_1 + j\omega L_C I_2
V_2 = j\omega L_B I_2 + j\omega L_C (I_1 + I_2)
= j\omega L_C I_1 + j\omega (L_B + L_C) I_2
\]

Compare with
\[
V_1 = j\omega L_1 I_1 + j\omega M I_2,
V_2 = j\omega M I_1 + j\omega L_2 I_2.
\]

Thus,
\[
L_1 = L_A + L_C
L_2 = L_B + L_C
M = L_C
\]
or,
\[
L_A = L_1 - M
L_B = L_2 - M
L_C = M.
\]

Note: \(L_A \) or \(L_B \) can be negative: Not realizable, just mathematical model.

When can we use Model 2?
Consider:
Connection makes NO difference if loops are not connected (current in connector must be zero if no return path) – OK to connect, use model 2. But if loops are already connected, this creates a new loop, not OK.

Consider circuit:

\[
\begin{array}{c}
\text{L}_1 \quad \text{R} \quad \text{L}_2 \\
\end{array}
\]

Can reposition elements, same circuit:

\[
\begin{array}{c}
\text{R} \quad \text{L}_2 \quad \text{L}_1 \\
\end{array}
\]

Then use Model 2:

\[
\begin{array}{c}
\text{R} \quad \text{L}_A \quad \text{L}_B \\
\text{L}_C \\
\end{array}
\]

Since no current flows in \(L_C\), remove from circuit:

\[
\begin{array}{c}
\text{R} \quad \text{L}_1 - \text{M} \quad \text{L}_2 - \text{M} \\
\end{array}
\]

Reflected Impedance

Use mesh method, with Model 1:

\[
\begin{align*}
V_S &= Z_1 I_1 + j\omega L_1 I_1 + j\omega M I_2, \quad (1) \\
0 &= Z_2 I_2 + j\omega L_2 I_2 + j\omega M I_1. \quad (2)
\end{align*}
\]

From (2):

\[
I_2 = -\frac{I_1 j\omega M}{Z_2 + j\omega L_2}.
\]

Substitute in (1):

\[
V_S = (Z_1 + j\omega L_1) I_1 + j\omega M \left[- I_1 j\omega M / (Z_2 + j\omega L_2)\right],
\]

So

\[
Z_{in} = \frac{V_S}{I_1} = Z_1 + j\omega L_1 - (j\omega M)^2 / (Z_2 + j\omega L_2)
\]

\[
= Z_1 + j\omega L_1 + \omega^2 M^2 / (Z_2 + j\omega L_2).
\]

Primary impedance \(Z_{pri} = Z_1 + j\omega L_1\)

Secondary impedance \(Z_{sec} = \omega^2 M^2 / (Z_2 + j\omega L_2)\).

Consider secondary impedance:

Let \(Z_2 = R_2 + j X_2\), then

\[
Z_{sec} = \frac{\omega^2 M^2}{(Z_2 + j\omega L_2)}
\]

\[
= \frac{\omega^2 M^2}{(R_2 + j (X_2 + \omega L_2))}
\]

\[
= \frac{(\omega^2 M^2 R_2 - j\omega^2 M^2 (X_2 + \omega L_2)) / (R_2^2 + (X_2 + \omega L_2)^2)}.
\]

Note: Re\([Z_{sec}] > 0 \rightarrow \text{real resistance.}

\[
\text{Im}[Z_{sec}] = -j\omega^2 M^2 (X_2 + \omega L_2) / (R_2^2 + (X_2 + \omega L_2)^2).
\]

If \(X_2 \geq 0\) (i.e., inductor), then \(\text{Im}[Z_{sec}] \leq 0\) (capacitor).
If $X_2 < -\omega L_2$ (i.e., capacitor), then $\text{Im}[Z_{\text{sec}}] > 0$ (inductor).

If $-\omega L_2 < X_2 < 0$, (i.e., capacitor), then $\text{Im}[Z_{\text{sec}}] \leq 0$ (capacitor).

Ideal Transformer

![Ideal Transformer Diagram]

Ideal transformer behaves like 2 mutual inductors with perfect coupling, infinite inductance.

Perfect coupling $\rightarrow \phi_1 = \phi_1 = \phi$.

Then

$v_1(t) = N_1 d\phi_1 / dt = N_1 d\phi / dt$

$v_2(t) = N_2 d\phi_2 / dt = N_2 d\phi / dt$

so

$v_1(t) / v_2(t) = N_1 / N_2$.

Also, no power dissipation (pure inductance), so

$i_1 v_1 + i_2 v_2 = 0$,

thus,

$i_2 / i_1 = -N_1 / N_2$.

Example 4.3. Reflected impedance.

![Reflected Impedance Diagram]

Find input impedance

$Z_{\text{in}} = V_S / I_{\text{in}}$.

$V_1 = V_S \Rightarrow V_2 = nV_1 = nV_S$

and

$I_{\text{in}} = I_1 \Rightarrow I_2 = -I_1 / n = -I_{\text{in}} / n$.

Also,

$I_2 = -V_2 / Z_L = -nV_S / Z_L$

Thus,

$I_{\text{in}} = -nI_2 = -n(-nV_S / Z_L) = n^2 V_S / Z_L$.

So

$Z_{\text{in}} = V_S / I_{\text{in}} = Z_L / n^2$.

Can replace transformer and Z_L by Z_L / n^2.

END EXAMPLE 4.3.

Example 4.4. Primary side transformation.

![Primary Side Transformation Diagram]

Find Thevenin equivalent circuit.

Open circuit: Find V_{OC}

$I_2 = 0 \Rightarrow I_1 = 0$.

Then

$V_S = I_1 Z_S + V_1 = V_1$.

And

$V_{OC} = V_2 = nV_1 = nV_S$.

Short circuit: Find I_{SC}:

$V_2 = 0 \Rightarrow V_1 = 0$.

Then

$V_S = I_1 Z_S + V_1 = I_1 Z_S \Rightarrow I_1 = V_1 / Z_S$.

So
\[I_{SC} = -I_2 = \frac{I_1}{n} = \frac{V_S}{nZ_S}. \]
Finally,
\[Z_T = \frac{V_{oc}}{I_{SC}} = \frac{nV_S}{(V_S/nZ_S)} = n^2Z_S. \]
So equivalent circuit becomes:

If dots are opposite, sign of \(n \) changes → voltage changes polarity, no change in impedances.

END EXAMPLE 4.4.

Derivation of Ideal Transformer

Why is there no inductance associated with ideal transformer?

Consider ideal transformer as mutually coupled inductors.

\[V_S = j\omega L_1 I_1 + j\omega M I_2, \quad (1) \]
\[0 = Z_L I_2 + j\omega L_2 I_2 + j\omega M I_1. \quad (2) \]

From (2):
\[I_2 = -\frac{I_1 j\omega M}{(Z_L + j\omega L_2)}. \]
Substitute in (1):
\[V_S = I_1 (j\omega L_1 - (j\omega M)^2 / (Z_L + j\omega L_2)) = I_1 (j\omega L_1 + \omega^2 M^2 / (Z_2 + j\omega L_2)). \]

So
\[Z_{in} = \frac{V_S}{I_1} = j\omega L_1 + \omega^2 M^2 / (Z_L + j\omega L_2) = j\omega L_1 + \omega^2 M^2 (Z_L - j\omega L_2) / (Z_L^2 + \omega^2 L_2^2) = \omega^2 M^2 Z_L / (Z_L^2 + \omega^2 L_2^2) + j\omega [L_1 - L_2 \omega^2 M^2 / (Z_L^2 + \omega^2 L_2^2)]. \]

Assume ideal coupling: \(M = \sqrt{L_1 L_2} \).
\[Z_{in} = \omega^2 L_1 L_2 Z_L / (Z_L^2 + \omega^2 L_2^2) + j\omega [L_1 - \omega^2 L_1 L_2^2 / (Z_L^2 + \omega^2 L_2^2)]. \]

Let \(L_2 = n^2 L_1 \):
\[Z_{in} = \omega^2 n^2 L_1^2 Z_L / (Z_L^2 + \omega^2 n^4 L_1^2) + j\omega [L_1 - \omega^2 n^4 L_1^3 / (Z_L^2 + \omega^2 n^4 L_1^2)]. \]

Let \(L_1 \rightarrow \infty \):
\[Z_{in} \rightarrow \omega^2 n^2 L_1^2 Z_L / (\omega^2 n^4 L_1^2) + j\omega [L_1 - \omega^2 n^4 L_1^3 / (\omega^2 n^4 L_1^2)] = Z_L / n^2 + j\omega [L_1 - L_1] = Z_L / n^2. \]

So input impedance includes no inductance from ideal transformer.

Example 4.5. Circuit with ideal transformer.

Let \(V_S = 36 \angle 0 \text{ deg} \ V. \)
\[Z_{R1} = 3, \quad Z_{R2} = 6, \]
\[Z_{R3} = 2, \quad Z_{R4} = 2, \]
\[Z_{C1} = -j2, \quad Z_{C2} = -j2, \]
\(n = 2. \)

Find \(V_O \):
Transform source side (multiply voltage by n, negative because dots reversed, multiply impedances by n²)

\[V_{OC} = (-n \cdot V_S) \cdot \left(\frac{n^2 R_2}{n^2 R_1 + n^2 R_2} \right) \]
\[= (-72) \cdot \left(\frac{24}{12 + 24} \right) \]
\[= -48 \]
\[= 48 \angle 180 \text{ deg. V.} \]

Find \(Z_T \):
\[Z_T = Z_{C2} + n^2 Z_{C1} + n^2 R_3 + \left(n^2 R_1 \right) \cdot \left(\frac{n^2 R_2}{n^2 R_1 + n^2 R_2} \right) \]
\[= -j2 + 4 (-j2) + 4 (2) + (12) (24) / (12 + 24) \]
\[= -j2 - j8 + 8 \]
\[= 16 - j10. \]

\[V_O = \frac{V_T \cdot R_4}{(R_4 + Z_T)} \]
\[= \frac{(-48) \cdot (2)}{(2 + 16 - j10)} \]
\[= \frac{-96}{(18 - j10)} \]
\[= \frac{(96 \angle 180)}{(20.59 \angle -29.05)}. \]
\[= 4.66 \angle 209.05. \]
\[= 4.66 \angle -150.95 \text{ deg V.} \]

End Example 4.5

End Chapter 4.

Revised 4/26/04