Instructor: Behzad Razavi
56-147D, Eng. IV
(310) 206-1633, ee10fall@gmail.com
(Emails sent to other addresses may be caught by filters.)
Office Hours: MW, 10:30-12:00

Web Page: EEWEB (All handouts will be posted on this page.)

TAs: Wood Chiang, ee10fall@gmail.com
Long Kong, ee10fall@gmail.com
(Emails sent to other addresses may be caught by filters.)

Time: MW 2:00-4:50 pm

Place: Haines A18

Prerequisites: Physics 1b and 1c

Credit: 4 Units

Grading: Midterm 40%
Final 40%
Homeworks 20%

HW Policy: All homeworks are due at the end of the lecture. Late or unstapled homeworks are not accepted.
Turn in your homework to the TA at the end of the lecture.
Box all answers. Answers not highlighted by boxes receive no credit.
Keep a copy of your homeworks. We are not responsible for lost homeworks.

Use of laptops is not allowed during class.

Course Textbook:

(Cannot guarantee that other editions are the same.)

Important Dates:

<table>
<thead>
<tr>
<th>Date</th>
<th>Description</th>
<th>Due Date</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mon., Oct. 8</td>
<td>HW#1 Due</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wed., Oct. 17</td>
<td>HW#2 Due</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mon., Oct. 29</td>
<td>HW#3 Due</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mon., Nov. 5</td>
<td>HW#4 Due</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wed., Nov. 7</td>
<td>Midterm Exam (Open Book, Open Notes)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wed., Nov. 21</td>
<td>HW#5 Due</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wed., Nov. 28,</td>
<td>HW#6 Due</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wed. Dec. 5</td>
<td>HW#7 Due</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wed. Dec. 12, 11:30-2:30</td>
<td>Final Exam (Open Book, Open Notes)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Course Outline

EE10

Electric Charge
Potential Difference
Current and Resistance
Ohm’s Law
Resistors in Series and Parallel
Kirchhoff’s Laws
Multi-Loop Circuits
Capacitors in Series and Parallel
RC Circuits

Physics 1b

Electric Charge
Potential Difference
Current and Resistance
Ohm’s Law
Resistors in Series and Parallel
Kirchhoff’s Laws
Multi-Loop Circuits
Capacitors in Series and Parallel
RC Circuits

Electric Quantities:
Charge, Current, Voltage, Power

Electric Components:
Voltage and Current Sources, Resistors
Ohm’s Law
Capacitors, Inductors, Op Amps

Kirchhoff’s Laws:
KVL and KCL
Series and Parallel Combinations
Current and Voltage Division

Circuit Analysis Methods:
Nodal Analysis, Mesh Analysis
Superposition
Thevenin and Norton Theorems

Capacitors and Inductors:
Energy storage and “Memory”
RC Circuits
RL Circuits
RLC Circuits

Op Amp Circuits