Practice problems for chapter 7

1. **Exercise 7.1.** We can rewrite the formula as

\[
\frac{1 - \cos x}{\sin x} = \frac{(1 - \cos x)(1 + \cos x)}{\sin x (1 + \cos x)} = \frac{\sin x}{1 + \cos x}.
\]

Evaluating this expression yields

```matlab
>> format long e
>> chop(sin(1e-2),4)/(1+chop(cos(1e-2),4))
ans =
     5.000000000000000e-003
```

which is much more accurate, if we compare with the result in the full Matlab precision

```matlab
>> format long e
>> (sin(1e-2))/(1+cos(1e-2))
ans =
     5.000041667083338-003
```

2. **Exercise 7.3.** If you display the intermediate results in the first loop, you’ll notice that the variable `sum` reaches the value 1.6240 at \(k = 44 \), and remains constant after that. The reason is simple: \(\frac{1}{45^2} = 4.938 \cdot 10^{-4} \), so

\[
1.6240 + 4.938 \cdot 10^{-4} = 1.62449\ldots,
\]

and rounding to four significant digits yields 1.6240.

The second implementation is much more accurate, because we add the smallest terms \(1/k^2 \) first, while the sum is still small, and the largest terms are added at the end of the iteration.

3. **Exercise 7.4.** Matlab returns the following numbers

(a) 0
(b) \(1.1102 \cdot 10^{-16} \)
(c) \(-1.1102 \cdot 10^{-16} \)
(d) 0
(e) \(-2.2204 \cdot 10^{-16} \)
To explain the first three values, we have to determine the floating-point numbers closest to 1. The representation of 1 as a double precision floating-point number is

\[
1 = (1 \cdot 2^{-1} + 0 \cdot 2^{-2} + \cdots + 0 \cdot 2^{-n}) 2^1
\]

where \(n = 53 \). The smallest floating-point number greater than 1 is

\[
(.10 \cdots 01)_2 2^1 = (1 \cdot 2^{-1} + 0 \cdot 2^{-2} + \cdots + 0 \cdot 2^{-n-1} + 1 \cdot 2^{-n}) 2^1
\]

\[
= 1 + 2^{-n+1}
\]

\[
= 1 + 2.2204 \cdot 10^{-16}
\]

\[
= 1 + 2\epsilon_M.
\]

The largest floating-point number less than 1 is

\[
(.11 \cdots 11)_2 2^0 = (1 \cdot 2^{-1} + 1 \cdot 2^{-2} + \cdots + 1 \cdot 2^{-n-1} + 1 \cdot 2^{-n}) 2^0
\]

\[
= 1 - 2^{-n}
\]

\[
= 1 - 1.1102 \cdot 10^{-16}
\]

\[
= 1 - \epsilon_M.
\]

This is summarized in the figure below (with \(\epsilon_M = 2^{-53} \approx 1.11 \cdot 10^{-16} \)).

<table>
<thead>
<tr>
<th></th>
<th>1 - 3\epsilon_M</th>
<th>1 - 2\epsilon_M</th>
<th>1 - \epsilon_M</th>
<th>1</th>
<th>1 + 2\epsilon_M</th>
<th>1 + 4\epsilon_M</th>
</tr>
</thead>
</table>

The situation around the number −1 is symmetric: the smallest floating-point number greater than −1 is \(-1 + \epsilon_M\); the largest floating-point number less than −1 is \(-1 - 2\epsilon_M\).

It is now easy to explain the first three results.

(a) \(1 + 10^{-16} \) lies between 1 and \(1 + \epsilon_M \), so it is rounded to 1, and subtracting 1 yields zero.

(b) \(10^{-16} - 1 \) lies between \(-1 + \epsilon_M/2\) and \(-1 + \epsilon_M\), so it is rounded to \(-1 + \epsilon_M\), and adding 1 yields \(\epsilon_M \).

(c) \(1 - 10^{-16} \) lies between \(1 - \epsilon_M \) and \(1 - \epsilon_M/2 \), so it is rounded to \(1 - \epsilon_M \), and subtracting 1 yields \(-\epsilon_M \).
To explain the next four values, we have to determine the floating-point numbers closest to 2. The representation of the number 2 as a double precision floating-point number is

\[2 = (1 \cdot 2^{-1} + 0 \cdot 2^{-2} + \cdots + 0 \cdot 2^{-n}) 2^2 \]

\[= (10 \cdots 00)_2 2^2 \]

where \(n = 53 \). The smallest floating-point number greater than 2 is

\[(10 \cdots 01)_2 2^2 = (1 \cdot 2^{-1} + 0 \cdot 2^{-2} + \cdots + 0 \cdot 2^{-n-1} + 1 \cdot 2^{-n}) 2^2 \]

\[= 2 + 2^{-n+2} \]

\[= 2 + 4.409 \cdot 10^{-16} \]

\[= 2 + 4\epsilon_M. \]

The largest floating-point number less than 2 is

\[(11 \cdots 11)_2 2^1 = (1 \cdot 2^{-1} + 1 \cdot 2^{-2} + \cdots + 1 \cdot 2^{-n-1} + 1 \cdot 2^{-n}) 2^1 \]

\[= 2 - 2^{-n+1} \]

\[= 2 - 2.2024 \cdot 10^{-16} \]

\[= 1 - 2\epsilon_M. \]

This is summarized below.

\[
\begin{array}{cccccc}
2 - 6\epsilon_M & 2 - 4\epsilon_M & 2 - 2\epsilon_M & 2 & 2 + 4\epsilon_M & 2 + 8\epsilon_M \\
\end{array}
\]

With this in mind we can explain the answers.

(d) \(2 + 2 \cdot 10^{-16} \) lies between 2 and \(2 + 2\epsilon_M \), so it is rounded to 2, and subtracting 2 yields zero.

(e) \(2 - 2 \cdot 10^{-16} \) lies between \(2 - 2\epsilon_M \) and \(2 - \epsilon_M \), so it is rounded to \(2 - 2\epsilon_M \), and subtracting 2 yields \(-2\epsilon_M\).

(f) \(2 + 3 \cdot 10^{-16} \) lies between \(2 + 2\epsilon_M \) and \(2 + 4\epsilon_M \), so it is rounded to \(2 + 4\epsilon_M \), and subtracting 2 yields \(4\epsilon_M \).

(g) \(2 - 3 \cdot 10^{-16} \) lies between \(2 - 3\epsilon_M \) and \(2 - 2\epsilon_M \), so it is rounded to \(2 - 2\epsilon_M \), and subtracting 2 yields \(-2\epsilon_M\).

4. Exercise 7.6. The final value is \(x = 1 \).

Using the hint we can say that after one pass through the first for-loop we have \(1 < x < 1 + 1/2 \). After the second pass, \(1 < x < 1 + 1/4 \). After \(k \) passes, \(1 < x < 1 + 1/2^k \), and after finishing the for-loop we have

\[1 < x < 1 + 2^{-54}. \]
This means \(x \) lies between 1 and \(1 + \epsilon_M \). (Recall that \(\epsilon_M = 2^{-53} \).) Therefore we can expect that in double-precision arithmetic, the value after the first for-loop will be \(x = 1 \), and squaring 54 times still yields \(x = 1 \).

5. **Exercise 7.9.** Matlab returns the following values:

- for \(n = 10^{-4} \): \((1 + 1/n)^n = 2.718145926 \) (five correct significant digits)
- for \(n = 10^{-8} \): \((1 + 1/n)^n = 2.718281798 \) (eight correct significant digits)
- for \(n = 10^{-12} \): \((1 + 1/n)^n = 2.718523496 \) (four correct significant digits)
- for \(n = 10^{-16} \): \((1 + 1/n)^n = 1 \) (zero correct significant digits)

The last result is easiest to explain. \(1 + 1/n = 1 + 10^{16} \) is rounded to one because \(10^{-16} \) is less than the machine precision.

For the other values we observe that the accuracy first improves as expected, and then gets worse for very large values of \(n \). We can explain this as follows.

When adding \(1/n \) to 1, we make a very small roundoff error \(\Delta \) (of the order of \(10^{-16} \)), so in the next step we really calculate \((1 + 1/n + \Delta)^n\) instead of \((1 + 1/n)^n\). Taking the Taylor series expansion of \((1 + 1/n + \Delta)^n\) around \(\Delta = 0 \), we obtain

\[
(1 + 1/n + \Delta)^n \approx (1 + 1/n)^n + n(1 + 1/n)^{n-1}\Delta \\
= (1 + 1/n)^n(1 + \frac{n}{1 + 1/n}\Delta) \\
\approx (1 + 1/n)^n(1 + n\Delta).
\]

We see that the relative error in the result is

\[
\frac{|(1 + 1/n + \Delta)^n - (1 + 1/n)^n|}{(1 + 1/n)^n} \approx |n\Delta|,
\]

i.e., the small error \(\Delta \) leads to a very large relative error \(|n\Delta| \) in the final result. Note that this error is not caused by cancellation.

6. **Exercise 7.11.**

(a) The first discontinuity is at \(x = \sqrt{\epsilon_M} \).

The number \(1 - x^2/2 \) is indistinguishable from 1 if

\[
1 - \frac{\epsilon_M}{2} < 1 - \frac{x^2}{2} \leq 1,
\]

or \(0 \leq x < \sqrt{\epsilon_M} \).
(b) The second discontinuity is at \(x = \sqrt{3\epsilon_M} \). If

\[
1 - \frac{3\epsilon_M}{2} < 1 - \frac{x^2}{2} < 1 - \frac{\epsilon_M}{2}
\]

then \(1 - x^2/2 \) is rounded to \(1 - \epsilon_M \). If

\[
1 - \frac{5\epsilon_M}{2} < 1 - \frac{x^2}{2} < 1 - \frac{3\epsilon_M}{2}
\]

then \(1 - x^2/2 \) is rounded to \(1 - 2\epsilon_M \). The boundary is at \(x = \sqrt{3\epsilon_M} \).

(c) The left limit is

\[
\frac{1 - (1 - \epsilon_M)}{3\epsilon_M} = \frac{1}{3}.
\]

The right limit is

\[
\frac{1 - (1 - 2\epsilon_M)}{3\epsilon_M} = \frac{2}{3}.
\]

(d) Multiply and divide by \(1 + \cos x \) gives a formula that avoids cancellation for \(x \) around 0:

\[
f(x) = \frac{(1 - \cos x)(1 + \cos x)}{x^2(1 + \cos x)} = \frac{\sin(x)^2}{x^2(1 + \cos x)}.
\]