P1.21 (a) Elements \(C \) and \(D \) are in series.
(b) Because elements \(C \) and \(D \) are in series, the currents are equal in magnitude. However, because the reference directions are opposite, the algebraic signs of the current values are opposite. Thus, we have \(i_c = -i_d \).
(c) At the node joining elements \(A \), \(B \), and \(C \), we can write the KCL equation \(i_b = i_c + i_e = 3 + 1 = 4 \text{ A} \). Also, we found earlier that \(i_d = -i_e = -1 \text{ A} \).

P1.24 We are given \(i_e = -1 \text{ A} \), \(i_c = 3 \text{ A} \), \(i_d = 5 \text{ A} \), and \(i_b = 1 \text{ A} \). Applying KCL, we find

\[
\begin{align*}
 i_b &= i_c + i_e = 2 \text{ A} \\
 i_d &= i_c - i_e = 7 \text{ A}
\end{align*}
\]

\[
\begin{align*}
 i_e &= i_c + i_d = 4 \text{ A} \\
 i_d &= i_c + i_b = 6 \text{ A}
\end{align*}
\]

P1.25 (a) Elements \(A \) and \(B \) are in parallel.
(b) Because elements \(A \) and \(B \) are in parallel, the voltages are equal in magnitude. However, because the reference polarities are opposite, the algebraic signs of the voltage values are opposite. Thus, we have \(v_e = -v_b \).
(c) Writing a KVL equation while going clockwise around the loop composed of elements \(A \), \(C \) and \(D \), we obtain \(v_e - v_d - v_c = 0 \). Solving for \(v_c \) and substituting values, we find \(v_c = 7 \text{ V} \). Also, we have \(v_b = -v_e = -2 \text{ V} \).

P1.27 We are given \(v_e = 5 \text{ V} \), \(v_b = 7 \text{ V} \), \(v_d = -10 \text{ V} \), and \(v_a = 6 \text{ V} \). Applying KVL, we find

\[
\begin{align*}
 v_d &= v_e + v_b = 12 \text{ V} \\
 v_e &= -v_e - v_d + v_c = 8 \text{ V} \\
 v_b &= v_e + v_a = 7 \text{ V}
\end{align*}
\]

P1.43 (a) \(10 = v_1 + v_2 \)
(b) \(v_1 = 15i \)
\(v_2 = 5i \)
(c) \(10 = 15i + 5i \)
\(i = 0.5 \text{ A} \)
(d) \(P_{\text{source}} = -10i = -5 \text{ W} \). (Power delivered by the source.)
\(P_1 = 15i^2 = 3.75 \text{ W} \) (absorbed)
\(P_2 = 5i^2 = 1.25 \text{ W} \) (absorbed)