Appendix A
Exercise Problems

EXERCISE 1.1

If the surface concentration is fixed at the solid solubility limit of boron in silicon of $N_s = 1.8 \times 10^{20}$ atoms/cm3 and boron is diffused at 950 °C for 30 minutes ($D_{boron} = 3.0 \times 10^{-15}$ cm2/s at that temperature) into an n-type substrate, calculate the boron impurities at 0.05 μm and 0.1 μm.

Solution:
Since 30 minutes = 30 × 60 = 1800 s, and with a constant surface concentration, the distribution is a complementory error function,

\[
N(0.05 \mu, 1800) = 1.8 \times 10^{20} \text{erf}c\left[\frac{0.05 \times 10^{-4}}{2\sqrt{3} \times 10^{-15} \times 1800}\right]
\]

\[
N(0.05 \mu, 1800) = 1.8 \times 10^{20} \text{erf}c[1.0758] \quad \text{where erf}c[1.0758] = 0.12816
\]

from Table 1.1 or Figure Pl.1, therefore

\[
N(0.05 \mu, 1800) = 1.8 \times 10^{20} \text{erf}c[1.0758] = 2.3068 \times 10^{10}/\text{cm}^3
\]

Similarly,

\[
N(0.1 \mu, 1800) = 1.8 \times 10^{20} \text{erf}c[2.152] = 4.2169 \times 10^{17}/\text{cm}^3
\]

Note that the impurities have decreased by two orders of magnitude while the distance has only doubled.

EXERCISE 2.1

For the energy band diagram shown:
(a) Sketch the charge density, electric field, and potential.
(b) Let $kT = 0.026$ eV and calculate the maximum electric field and the built-in potential, V_b.

153
Solution:

\[E_a \]

\[30 \, kT \]

\[E_i \]

\[10 \, kT \]

\[E_F \]

\[10 \, kT \]

\[E_s \]

\[30 \, kT \]

Charge density

\[10^{-4} \, \text{cm} \]

Electric field

\[\frac{dE_x}{dx} = \frac{1}{q} \left[\frac{20 \, kT}{10^{-4}} \right] = -5.2 \, \text{KV/cm} \]

\[V(x) \]

\[20 \, kT/q = 0.52 \, \text{volts} \]

EXERCISE 2.2

Sketch the energy band diagram (in units of \(kT \)), charge density, and potential for a silicon \(n^+ - p \) junction with \(N_{D} = 2 \times 10^{17} / \text{cm}^3 \) and \(N_A = 5 \times 10^{15} / \text{cm}^3 \). Let \(kT = 0.026 \, \text{eV} \) or \(kT/q = 0.026 \, \text{volts} \) and \(n_i = 10^{10} / \text{cm}^3 \).

Solution:

\[V_{bi} = 0.026 \ln \left(\frac{10^{17}}{10^{15}} \right) = 29.934 \, kT = 0.77827 \, \text{volts} \]

\[E_F - E_i = kT \ln \left(\frac{2 \times 10^{17}}{10^{15}} \right) = 16.811 \, kT \]

\[E_E - E_i = -kT \ln \left(\frac{5 \times 10^{15}}{10^{16}} \right) = -13.122 \, kT \quad \text{and} \quad E_a = 43.08 \, kT \]
EXERCISE 2.3

For the example at the end of Section 2.3, calculate the junction voltage required to make W equal to

(a) $2 \, \mu m$

Solution:

$$2 \times 10^{-4} = \left[1.306 \times 10^7(0.659 - V_A) \frac{1.1 \times 10^{16}}{10^{11}} \right]^{1/2}$$

$$0.659 - V_A = 2.7844 \quad \text{and therefore } V_A = -2.1254 \, \text{volts}$$

(b) $0.6 \, \mu m$

Solution:

$$0.659 - V_A = \frac{0.36 \times 10^{-8}}{1.306 \times 10^7(1.1 \times 10^{-15})} = 0.25059 \quad \text{and } V_A = 0.40841$$
EXERCISE 3.1

A silicon step junction has \(N_A = 10^{18}/\text{cm}^3 \) and \(N_D = 10^{15}/\text{cm}^3 \) with \(n_i = 10^{10}/\text{cm}^3 \) and \(kT = 0.026 \text{ eV} \). Calculate

(a) \(\Delta p_d(x_d) \) if \(V_A = 0.4 \) and 0.6 volts

Solution:

\[n_{p0} = \frac{n_i^2}{N_A} = 10^{20} \text{ cm}^{-3} \]
\[p_{p0} = \frac{n_i^2}{N_D} = 10^{20} \text{ cm}^{-3} \]
\[\Delta p_d(x_d) = 10^5(e^{0.4\times0.026} - 1) = 4.581 \times 10^{11} \text{ cm}^{-3} \]
\[\Delta p_d(x_d) = 10^5(e^{0.6\times0.026} - 1) = 1.052 \times 10^{15} \text{ cm}^{-3} \]

(b) \(\Delta n_d(-x_d) \) if \(V_A = 0.4 \) and 0.6 volts

Solution:

\[\Delta n_d(-x_d) = 10^5(e^{0.4\times0.026} - 1) = 4.581 \times 10^{10} \text{ cm}^{-3} \]
\[\Delta n_d(-x_d) = 10^5(e^{0.6\times0.026} - 1) = 1.052 \times 10^{11} \text{ cm}^{-3} \]

(c) Are low-level injection conditions valid in parts (a) and (b)?

In part (a) at \(V_A = 0.6 \) it is not valid since \(\Delta p_d(x_d) \) is not \(\ll 10^9 \text{ cm}^{-3} \). All the other cases are valid solutions.

EXERCISE 3.2

A step junction has \(N_A = 10^{17}/\text{cm}^3 \) and \(N_D = 5 \times 10^{15}/\text{cm}^3 \) with \(D_n = 30 \text{ cm}^2/\text{s} \), and \(D_p = 12 \text{ cm}^2/\text{s} \). Let \(n_i = 10^{10}/\text{cm}^3 \), \(kT = 0.026 \text{ eV} \), \(L_N = 10 \times 10^{-4} \text{ cm} \), \(L_P = 15 \times 10^{-4} \text{ cm} \), and \(A = 10^{-4} \text{ cm}^2 \). Calculate:

(a) the ratio of the hole current to the total current in the depletion region.

Solution:

\[I_P(x_d) = qAN_i^2 \left[\frac{D_P}{L_P N_D} \right] \left(e^{\frac{qV}{kT}} - 1 \right) \]
\[I(x_d) = qAN_i^2 \left[\frac{D_P}{L_P N_D} + \frac{D_N}{L_N N_A} \right] \left(e^{\frac{qV}{kT}} - 1 \right) \]
\[\frac{I_P}{I} = \frac{1}{1 + \frac{D_N L_P N_D}{D_P L_N N_A}} = \frac{1}{1 + \frac{30 \times 1.5 \times 10^3}{12 \times 10}} = \frac{1}{1 + 0.1875} = 0.8421 \]
or 84.2% of the total.

(b) Repeat part (a) for the electron current.

Solution:

\[I_e = \frac{1}{1 + \frac{D_n L_n N_A}{D_p L_p N_p}} = \frac{1}{1 + \frac{12 \times 10}{30 \times 15} \times 10^{17}} = 0.13789 \]

or 15.8% of the total.

(c) If \(N_D \) were made smaller, discuss how this would affect the ratios of parts (a) and (b).

As \(N_D \) decreases the hole current percentage will increase and the electron current will decrease their percentage of the total.

EXERCISE 3.3

For the data given in Exercise 3.2 calculate the following at \(V_A = 0.4 \):

(a) \(\Delta p(x') = 0 \) and \(\Delta p(x') = 60 \, \mu \text{m} \)

\[\Delta p(x') = p_0 (e^{x' / \lambda_T} - 1)e^{-x' / \lambda_T} = \frac{n_i^2}{N_D} (e^{x' / 0.025} - 1)e^{-x' / 0.025} = 9.6047 \times 10^{10} e^{-0.025(15 \times 10^{-10})} \]

\[\Delta p_n(0') = 9.6047 \times 10^{10} / \text{cm}^3 \text{ and } \Delta p_e(x' = 60 \times 10^{-4}) = 1.759 \times 10^{9} / \text{cm}^3 \]

(b) \(I_p(x' = 0) \) and \(I_p(x' = L_p) \)

\[I_p(x') = q A n_i \left[\frac{D_p}{L_p} \frac{1}{N_D} \right] (e^{x' / \lambda_T} - 1)e^{-x' / \lambda_T} = 1.024 \times 10^{-10} (e^{15.385} - 1)e^{-15.385(15 \times 10^{-10})} \]

\[I_p(x' = 0) = 4.9195 \times 10^{-11} \text{ and } I_p(x' = L_p) = 4.9195 \times 10^{-11} e^{-1} = 1.8098 \times 10^{-10} \]

(c) If the recombination rate were, for some reason, to quadruple in the n-region, calculate the new value of \(I_p(x' = 0) \).

\(\tau_n \) becomes \(\tau_n / 4 \) and hence \(L_p \) becomes \(L_p / 2 \), and since \(I_p(x') \) is proportional to \(1/L_p \) it will double. Therefore \(I_p(x' = 0) \) will double to 9.839 \(\times 10^{-10} \).

EXERCISE 4.1

For a silicon p-n step junction doped at \(N_A = 10^{17} / \text{cm}^3 \) and \(N_D = 5 \times 10^{15} / \text{cm}^3 \) with \(n_i = 10^{10} / \text{cm}^3 \), \(kT/q = 0.026 \) volts, \(m = 4.0 \), and \(\xi_c = 4 \times 10^5 \) V/cm:

(a) Calculate \(V_{sat} \).
\[V_{BR} = (4 \times 10^5)^2 \left(\frac{8.854 \times 10^{-14} \times 11.8}{2q} \right) \left(\frac{10^{15} + 5 \times 10^{15}}{10^{17} \times 5 \times 10^{15}} \right) = 109.7 \text{ volts} \]

(b) At what value of \(V_A \) will the current have increased by

(i) 10.

(ii) 100?

\[M = \frac{10}{1 - \left(\frac{V_A}{V_{BR}} \right)^4} \quad \text{or} \quad \left(\frac{V_A}{V_{BR}} \right)^4 = \frac{M - 1}{M} \]

\[V_A = V_{BR} \sqrt[4]{\frac{M - 1}{M}} = 109.7 \sqrt[4]{\frac{10 - 1}{10}} = 106.85 \]

\[V_A = 109.7 \sqrt[4]{\frac{100 - 1}{100}} = 109.42 \]

(c) What is the ratio of \(I_{R-c}(V_A = -20)/I_{R-c}(V_A = -2)\)?

\[V_{Bi} = 0.7603 \quad \text{and} \quad W = k(V_{Bi} - V_A)^{1/2} \]

\[I_{R-c}(-20) = \frac{0.7603 + 20}{0.7603 + 2} = 2.7424 \]

EXERCISE 4.2

For a \(p^-n \) step junction that has \(W = 10^{-4} \text{ cm} \), \(n_i = 10^{10}/\text{cm}^3 \), \(N_0 = 5 \times 10^{15}/\text{cm}^3 \), \(A = 10^{-4}/\text{cm}^2 \), \(kT = 0.026 \text{ eV} \), \(\tau_0 = 20 \mu\text{s} \), and \(D_r/L_r = 10^2 \) with \(n_1 = 1.05 \) and \(n_2 = 2.0 \), what is:

(a) The ratio of \(I_{Rec}/I_{diffusion} \)

\[I_{diffusion} = qA n_i^2 \left(\frac{D_r}{L_r N_0} \right) \left(e^{\frac{V_A}{n_i/kT}} - 1 \right) \]

\[I_{Rec} = qA n_i W \left(e^{\frac{V_A}{n_i/kT}} - 1 \right) \]

\[\frac{I_{Rec}}{I_{diffusion}} = \frac{4 \times 10^{-11}(e^{0.023/kT} - 1)}{3.2 \times 10^{-15}(e^{0.23/kT} - 1)} = \frac{125(e^{0.23/V_A} - 1)}{10} \]

(b) The value of the ratio at \(V_A = 0.05 \), \(V_A = 0.1 \), and \(V_A = 0.2 \): From above,

\[\frac{I_{Rec}}{I_{diffusion}} = \frac{125(e^{0.23/kT} - 1)}{0.23/kT} = 38.519 \]
\[
\frac{I_{\text{Rec}}}{I_{\text{diffusion}}} = \frac{125(e^{0.211\times0.1} - 1)}{(e^{0.63\times0.1} - 1)} = 19.228
\]
\[
\frac{I_{\text{Rec}}}{I_{\text{diffusion}}} = \frac{125(e^{0.211\times0.2} - 1)}{(e^{0.63\times0.2} - 1)} = 3.7717
\]

EXERCISE 5.1

A p−n step junction is doped \(N_A = 10^{15}/\text{cm}^3\) and \(N_D = 10^{13}/\text{cm}^3\). Let \(kT = 0.026\) eV, \(n_i = 10^{10}/\text{cm}^3\), \(A = 10^{-4}\) cm², \(L_N = 14 \times 10^{-4}\) cm, \(L_P = 35 \times 10^{-4}\) cm, \(D_N = 20\) cm²/s, and \(D_P = 12.5\) cm²/s.

(a) Calculate the depletion capacitance if \(V_A = 0\) and \(-2\) volts.

\[V_n = 0.6585 \quad \text{and} \quad W = \sqrt{1.306 \times 10^7(0.6585) \left[\frac{1.1 \times 10^{16}}{10^3}\right]} = 0.9727 \times 10^{-4}\text{ cm}\]

\[C_P = \frac{K_0 e_A}{W} = \frac{11.8 \times 8.854 \times 10^{-11} \times 10^{-4}}{0.9727 \times 10^{-4}} = 1.074 \text{ pF}\]

\[C_J(V_A = -2) = \frac{1.074 \text{ pF}}{\left[1 - \left(-\frac{2}{0.6585}\right)\right]^{1/2}} = 0.5345 \text{ pF}\]

(b) Calculate the low-frequency conductance at \(V_A = 0\) and \(-2\) volts.

\[G_0 = \frac{q(T + I_0)}{kT} = \frac{q}{kT} \left\{ qAN_i \left[\frac{D_P}{L_P N_0} + \frac{D_N}{L_N N_A} \right] e^{qV_A/kT} \right\}\]

\[G_0 = \frac{8 \times 10^{-15}}{0.026} e^{0.026}\]

\[G_0 = 3.077 \times 10^{-11} \quad \text{at} \quad V_A = 0\]

\[G_0 = 3.077 \times 10^{-11} e^{-0.026} = 1.2046 \times 10^{-10}\]

EXERCISE 5.2

If for a p-n junction \(jv\tau_p = 1\) and \(jv\tau_n = 0.90\) at \(\omega = 10^5\) rad/s with \(A = 10^{-4}\) cm², \(V_A = 0.6\) volts, and \(\tau_p = 1.6 \times 10^{-10}\)

\[\frac{qD_n}{L_N} = 5.0 \times 10^{-11}\]

\[\frac{qD_p}{L_P} \eta_n = 1.6 \times 10^{-10}\]
Calculate G and C_D.

$Y = \frac{g_A}{kT} \left[1.6 \times 10^{-10}\sqrt{1 + ji} + 5.0 \times 10^{-11}\sqrt{1 + j0.90} \right] e^{0.60.936}$

$Y = 8.647 \times 10^{4}[1.6 \times 10^{-10}(1.414 \angle 45^\circ)^{1.2} + 5 \times 10^{-11}(1.345 \angle 41.99^\circ)^{1.2}]$

$Y = 8.647 \times 10^{4}[2.995 \times 10^{-10} + j0.9359 \times 10^{-10}]$

$Y = 1.9884 \times 10^{-4} + j0.80927 \times 10^{-4}$

$G = 1.9884 \times 10^{-4}$ and $C_D = \frac{0.80927 \times 10^{-4}}{10^4} = 0.80927$ pF

EXERCISE 6.1

The $p^+ - n$ junction has $I_f = 1$ mA and $\tau_p = 1$ μs and is turned off by $I_R = 0$. Derive an equation for $Q_p(t)$.

\[
\frac{dQ_p(t)}{dt} = 0 - \frac{Q_p(t)}{\tau_p}
\]

\[
\frac{dQ_p(t)}{Q_p(t)} = \frac{dt}{\tau_p}
\]

\[
\ln[Q_p(t)]_{Q_p(0)}^{Q_p(t)} = -\left[\frac{t}{\tau_p} \right]^{1}
\]

\[
Q_p(t) = Q_p(0)e^{-t/\tau_p}
\]

EXERCISE 6.2

For the turn-on transient by a constant current, derive a formula for the time required to reach 90% of the total current.

At infinite time, $v_A = V_A$ and 90% is 0.9 $kT/q \ln[I_f/I_0]$. In Eq. (6.21b) the "-1" term is very small compared to the exponent term as t approaches infinity. Then Eq. (6.22) becomes

\[
0.9V_A = \frac{kT}{q} \ln \left[\frac{I_f}{I_0}(1 - e^{-\psi_T}) \right] = 0.9 \left[\frac{kT}{q} \ln \left(\frac{I_f}{I_0} \right) \right]
\]

\[
\frac{I_f}{I_0}(1 - e^{-\psi_T}) = \left(\frac{I_f}{I_0} \right)^{0.9}
\]

\[
\psi_T = \frac{t}{\tau_p} \ln \left[1 - \left(\frac{I_f}{I_0} \right)^{0.1} \right]
\]
EXERCISE 7.1

A metal with $\Phi_M = 4.75$ eV (Au) and a semiconductor (Si) with $\chi = 4.05$ eV are formed into an ideal metal–semiconductor contact. If $kT = 0.026$ eV, $n_i = 10^{10}/\text{cm}^3$ and $N_D = 10^{16}/\text{cm}^3$.

(a) Is it a Schottky barrier or an “ohmic” contact?

If $\Phi_M > \chi + (E_c - E_{\text{Fermi}})$ then it is a Schottky diode

$$ (E_{\text{Fermi}} - E_F) = kT \ln \left[\frac{N_D}{n_i} \right] = (0.26) \ln \left[\frac{10^{16}}{10^{10}} \right] = 0.3592 \text{ eV} $$

$$ (E_c - E_{\text{Fermi}})_{\text{bulk}} = 0.56 - 0.3592 = 0.2008 \text{ eV} $$

Hence, $\Phi_S = 4.05 + 0.2008 = 4.2508$ eV which is less than 4.75 eV = Φ_M.

(b) Calculate the ideal barrier height for an electron in the metal at E_{Fermi}.

$$ \Phi_M - \chi = 4.75 - 4.05 = 0.700 \text{ eV} = \Phi_B $$

(c) Calculate the ideal barrier height for an electron at E_c in the semiconductor.

$$ \eta V_n = \Phi_M - \chi - (E_c - E_{\text{Fermi}})_{\text{bulk}} $$

$$ = 4.75 - 4.05 - 0.2008 = 0.4992 \text{ eV} $$

$$ V_n = 0.4992 \text{ volts} $$

(d) Calculate x_n for $V_A = 0$ and $V_A = -2$ volts

$$ x_n = \sqrt{\frac{2kT_0(V_n - V_A)}{\eta N_D}} $$

$$ x_n = \sqrt{\frac{2(1.18)8.85 \times 10^{-14}}{1.6 \times 10^{-19} \times 10^{16} (0.4992 - V_A)}} $$

$$ x_n = 36.116 \times 10^{-6} \sqrt{0.4992 - V_A} \quad \text{at } V_A = 0 \quad x_n = 25.57 \times 10^{-6} $$

$$ x_n = 0.255 \times 10^{-4} \quad x_n = 0.255 \mu\text{m} $$

@ $V_A = -2$

$$ x_n = 57.095 \times 10^{-6} = 0.57095 \times 10^{-4} = 0.57095 \mu\text{m} $$

EXERCISE 7.2

A Schottky barrier diode has a value of $\Phi_B = 0.5$ eV, $I_S = 5 \times 10^{-12}$ A, $n = 1.07$, and $kT = 0.026$ eV. If a second device were to be made with $\Phi_B = 0.7$ eV with everything else the same, what is the current through both if $V_A = 0.4$ volts and $V_A = -2$ volts?
\[I_1 = 5 \times 10^{-12}(e^{0.410.0260.026} - 1) = 5 \times 10^{-12}(e^{35.945-V_A} - 1) \]

\[I_1 = 8.7765 \mu A \quad @ \quad V_A = 0.4 \quad I_1 = x \times 10^{-12} \mu A \quad @ \quad V_A = -2 \]

since

\[I_{11} = K Ae^{-0.026} = KAe^{-0.520.026} = 5 \times 10^{-12} \quad \text{then} \quad KA = 1.1241 \times 10^{-3} \]

\[I_{22} = 1.1241 \times 10^{-7}e^{-0.790.026} = 2.2816 \times 10^{-15} \mu A \]

\[I_2 = 2.2816 \times 10^{-15}(e^{35.945-V_A} - 1) \quad @ \quad V_A = 0.4 \text{ volts} \]

\[I_2 = 2.2816 \times 10^{-15} \quad @ \quad V_A = -2 \text{ volts} \]