1) Using the energy band model for a semiconductor, explain how you visualize:
 (a) An electron. (b) A hole. (c) Donor sites
 (d) Acceptor sites. (e) An intrinsic e extrinsic semiconductor
 (f) An n-type semiconductor (g) A P-type semiconductor

2) (a) 1 ev is equal to how many Joules of energy?
 (b) \(kT \) is equal to how many ev at 300 K?
 (c) At 300 K, \(\frac{kT}{q} = ? \)
 (d) \(E_g (Si) = ? \)
 (e) \(E_g (GaAs) = ? \)
 (f) The ionization energy (1eV) of phosphorus site
 in Si is equal to?

3) Given that \(n_i = 1.02 \times 10^{10} \) /cm\(^3\) at \(T=300 \) K, calculate \(n_i \) at \(T=200 \) K, and \(T=150 \) K, assuming \(E_g (Si) = 1.12 \text{ev at all temperature} \).

4) A piece of Si is doped with \(2 \times 10^{15} \) /cm\(^3\) phosphorus atoms. What are the majority and minority carrier concentration at 300 K?

5) Suppose that the hole concentration in a piece of Si at room temperature is \(10^5 / \text{cm}^3 \), find:
 (a) The electron concentration. (b) The location of the Fermi energy.

6) A sample of Si is first doped with \(10^{15} / \text{cm}^3 \) Boron atoms, and then doped with \(4 \times 10^{15} / \text{cm}^3 \) Arsenic atoms.
 (a) What is the type of semiconductor?
 (b) Find the location of the Fermi energy.

(Cont. on page 2)
7) If we assume that $m_e = m_v = m_0$, find the density of valence band (N_V), and the density of conduction band (N_C).

8) For Si sample at $T = 300 \text{K}$, the Fermi level is located at 0.26 eV above the intrinsic Fermi level. What are the hole and electron concentrations?

9) In an n-type semiconductor, the temperature is lowered such that only half the donor atoms are ionized. Neglecting the degeneracy factor, show that

$$E_F = kT \ln \left(\frac{N_D}{2 N_C}\right) + E_C$$

10) In an extrinsic semiconductor, say n-type, at higher temperature the electrons come from ionization of the donor atoms as well as from excitation of electrons from the valence band to the conduction band. If N_D^+ is the donor density, show that the intrinsic carrier density, at the temperature at which the electron density is twice that of the hole density, is $\sqrt{2} N_D^+$.