5.3. Let
\[J = \frac{400 \sin \theta}{r^2 + 4} \, a_r \, \text{A/m}^2 \]

a) Find the total current flowing through that portion of the spherical surface \(r = 0.8 \), bounded by \(0.1 \pi < \theta < 0.3 \pi, 0 < \phi < 2 \pi \): This will be
\[I = \int \int J \cdot n \, da = \int_0^{2\pi} \int_0^{\pi} \frac{400 \sin \theta}{(8)^2 + 4(8)^2} \sin \theta \, d\theta \, d\phi = 400 \frac{(8)^2 \pi}{464} \int_0^{\pi} \sin^2 \theta \, d\theta \]
\[= 346.5 \int_0^{\pi} \frac{1}{2} [1 - \cos(2\theta)] \, d\theta = 77.4 \, \text{A} \]

b) Find the average value of \(J \) over the defined area. The area is
\[\text{Area} = \int_0^{2\pi} \int_0^{\pi} (8)^2 \sin \theta \, d\theta \, d\phi = 1.46 \, \text{m}^2 \]

The average current density is thus \(J_{\text{avg}} = \frac{(77.4/1.46)}{a_r} = 53.0 \, \text{A/m}^2 \).

5.5. Let
\[J = \frac{25}{\rho} \, a_p - \frac{20}{\rho^2 + 0.01} \, a_z \, \text{A/m}^2 \]

a) Find the total current crossing the plane \(z = 0.2 \) in the \(a_z \) direction for \(\rho < 0.4 \): Use
\[I = \int \int J \cdot n \, |z=0.2| \, da = \int_0^{2\pi} \int_0^{\pi} \frac{-20}{\rho^2 + 0.01} \, \rho \, d\rho \, d\phi \]
\[= -\frac{1}{2} \int_0^{2\pi} [20 \ln(\rho^2 + 0.01)] |z=0.2| \, d\phi = -20 \pi \ln(17) = -178.0 \, \text{A} \]

b) Calculate \(\partial \rho \rho / \partial t \): This is found using the equation of continuity:
\[\frac{\partial \rho}{\partial t} = -\nabla \cdot J = \frac{1}{\rho} \frac{\partial}{\partial \rho} (\rho \rho_J) + \frac{\partial J_z}{\partial z} = \frac{1}{\rho} \frac{\partial}{\partial \rho} (25) + \frac{\partial}{\partial z} \left(\frac{-20}{\rho^2 + 0.01} \right) = 0 \]

c) Find the outward current crossing the closed surface defined by \(\rho = 0.01, \rho = 0.4, z = 0, \) and \(z = 0.2 \): This will be
\[I = \int_0^{2\pi} \int_0^{0.01} a_p \cdot (-a_p) \, d\phi \, dz + \int_0^{2\pi} \int_0^{0.4} a_p \cdot (a_p) \, d\phi \, dz \]
\[+ \int_0^{2\pi} \int_0^{0.01} a_z \cdot (-a_z) \, \rho \, d\rho \, d\phi + \int_0^{2\pi} \int_0^{0.4} a_z \cdot (a_z) \, \rho \, d\rho \, d\phi = 0 \]
since the integrals will cancel each other.

d) Show that the divergence theorem is satisfied for \(J \) and the surface specified in part b. In part c, the net outward flux was found to be zero, and in part b, the net flux of \(J \) was found to be zero (as will be its volume integral). Therefore, the divergence theorem is satisfied.
5.12. Two identical conducting plates, each having area A, are located at $z = 0$ and $z = d$. The region between plates is filled with a material having z-dependent conductivity, $\sigma(z) = \sigma_0 e^{-z/\lambda}$, where σ_0 is a constant. Voltage V_0 is applied to the plate at $z = d$; the plate at $z = 0$ is at zero potential. Find, in terms of the given parameters:

a) the resistance of the material: We start with the differential resistance of a thin slab of the material of thickness dz, which is

$$dR = \frac{dz}{\sigma A} = \frac{e^{-z/\lambda}dz}{\sigma_0 A} \text{ so that } R = \int_0^d dR = \int_0^d \frac{e^{-z/\lambda}dz}{\sigma_0 A} = \frac{d}{\sigma_0 A} (e^{-1}) = \frac{1.72d}{\sigma_0 A} \Omega$$

b) the total current flowing between plates: We use

$$I = \frac{V_0}{R} = \frac{\sigma_0 A V_0}{1.72d}$$

c) the electric field intensity E within the material: First the current density is

$$J = \frac{I}{A} a_z = -\frac{\sigma_0 V_0}{1.72d} a_z \text{ so that } E = \frac{J}{\sigma(z)} = -\frac{V_0 e^{-z/d}}{1.72d} a_z \text{ V/m}$$

5.15. Let $V = 10(\rho + 1) z^2 \cos \phi$ V in free space.

a) Let the equipotential surface $V = 20$ V define a conductor surface. Find the equation of the conductor surface: Set the given potential function equal to 20, to find:

$$\rho + 1 = \frac{20}{z^2 \cos \phi}$$

b) Find ρ and E at that point on the conductor surface where $\phi = 0.2\pi$ and $z = 1.5$: At the given values of ϕ and z, we solve the equation of the surface found in part a for ρ, obtaining $\rho = 10$. Then

$$E = -\nabla V = -\frac{\partial V}{\partial \rho} \hat{a}_\rho - \frac{1}{\rho} \frac{\partial V}{\partial \phi} \hat{a}_\phi - \frac{\partial V}{\partial z} \hat{a}_z = -10z^2 \cos \phi \hat{a}_\rho + 10 \frac{\rho + 1}{\rho} z^2 \sin \phi \hat{a}_\phi - 20(\rho + 1) z \cos \phi \hat{a}_z$$

Then

$$E(10, 2\pi, 1.5) = -18.2 \hat{a}_\rho + 145 \hat{a}_\phi - 26.7 \hat{a}_z \text{ V/m}$$

c) Find $|\rho_s|$ at that point: Since E is at the perfectly-conducting surface, it will be normal to the surface, so we may write:

$$\rho_s = \varepsilon_0 E \left| \frac{\mathbf{E} \cdot \mathbf{n}}{|\mathbf{E}|} \right|_{\text{surface}} = \varepsilon_0 \frac{E \cdot E}{|E|} = \varepsilon_0 \sqrt{E \cdot E} = \varepsilon_0 \sqrt{(18.2)^2 + (145)^2 + (26.7)^2} = 1.32 \text{ nC/m}^2$$
5.22. The line segment $x = 0$, $-1 \leq y \leq 1$, $z = 1$, carries a linear charge density $\rho_L = \pi |y| \mu C/m$. Let $z = 0$ be a conducting plane and determine the surface charge density at: (a) $(0,0,0)$; (b) $(0,1,0)$.

We consider the line charge to be made up of a string of differential segments of length, dy', and of charge $dq = \rho_L\, dy'$. A given segment at location $(0, y', 1)$ will have a corresponding image charge segment at location $(0, y', -1)$. The differential flux density on the y axis that is associated with the segment-image pair will be

$$dD = \frac{\rho_L}{4\pi} \frac{(y - y') a_y - a_z}{((y - y')^2 + 1)\sqrt{2}} - \frac{\rho_L}{4\pi} \frac{(y - y') a_y + a_z}{((y - y')^2 + 1)\sqrt{2}}$$

In other words, each charge segment and its image produce a net field in which the y components have cancelled. The total flux density from the line charge and its image is now

$$D(y) = \int dD = \int_{-1}^{1} \frac{-\pi |y'| a_y \, dy'}{2\pi ((y - y')^2 + 1)^{3/2}}$$

$$= \left. \frac{a_z}{2} \int_{0}^{1} \left[\frac{y'}{((y - y')^2 + 1)^{3/2}} + \frac{y'(y + y') + 1}{((y + y')^2 + 1)^{3/2}} \right] \right|_{0}^{1}$$

$$= \left. \frac{a_z}{2} \left[\frac{y(y - 1) + 1}{((y - 1)^2 + 1)^{1/2}} + \frac{y(y + 1) + 1}{((y + 1)^2 + 1)^{1/2}} - 2(y^2 + 1)^{1/2} \right] \right|_{0}^{1}$$

Now, at the origin (part a), we find the charge density through

$$\rho_L(0,0,0) = D \cdot a_z \bigg|_{y=0} = \frac{a_z}{2} \left[\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} - 2 \right] = -0.29 \mu C/m^2$$

Then, at $(0,1,0)$ (part b), the charge density is

$$\rho_L(0,1,0) = D \cdot a_z \bigg|_{y=1} = \frac{a_z}{2} \left[1 + \frac{3}{\sqrt{5}} - 2 \right] = -0.24 \mu C/m^2$$

5.24. At a certain temperature, the electron and hole mobilities in intrinsic germanium are given as 0.43 and 0.21 m2/Vs, respectively. If the electron and hole concentrations are both 2.5×10^{19} m$^{-3}$, find the conductivity at this temperature.

With the electron and hole charge magnitude of 1.6×10^{-19} C, the conductivity in this case can be written:

$$\sigma = |\rho_L| \mu_e + |\rho_L| \mu_h = (1.6 \times 10^{-19})(2.3 \times 10^{19})(0.43 + 0.21) = 2.36 \text{ S/m}$$