PROBLEM SET 4

Prob. 1 Let \(B = \{v_1, v_2, v_3\} \) be a basis for \(\mathbb{R}^3 \), and \(A \) be a linear transformation on \(\mathbb{R}^3 \) into \(\mathbb{R}^3 \) defined by

\[
\begin{align*}
Av_1 &= 4v_2, \\
Av_2 &= -v_1 + v_3, \\
Av_3 &= v_2.
\end{align*}
\]

(a) Determine whether \(A \) is a simple linear transformation.

(b) What is the dimension of the subspace spanned by the eigenvectors of \(A \)?

(c) Repeat (a) and (b) for \(A^2 \).

Prob. 2 Show that if \(A \) is a linear transformation on a vector space \(V \) into \(V \) such that

\[A^3 - 3A^2 + 3A - 2I = 0\]

where \(I \) is the identity transformation on \(V \), then \(A \) is nonsingular. Find \(A^{-1} \) in terms of \(A \).

Prob. 3 For a linear transformation \(B \) on \(\mathbb{R}^3 \) into \(\mathbb{R}^3 \) whose matrix representation with respect to some basis \(B \) is given by

\[
[B]_B = \frac{1}{8} \begin{bmatrix}
9 & 0 & -3 \\
10 & -8 & 2 \\
3 & 0 & -1
\end{bmatrix}.
\]

(a) Find

(i) the characteristic polynomial;

(ii) the eigenvalues and their corresponding eigenvectors;

(iii) the determinant and trace.

(b) Repeat (a) for the linear transformation \(B' \) whose matrix representation with respect to basis \(B \) is \([B]_B^T\) (the transpose of \([B]_B\)).

Prob. 4 Consider the linear transformation \(A \) on \(\mathbb{R}^3 \) into \(\mathbb{R}^3 \) whose matrix representation with respect to some basis is given by

\[
[A] = \begin{bmatrix}
1 & 1/2 & 1/2 \\
0 & 2 & 0 \\
-2 & 1 & 3
\end{bmatrix}.
\]

(a) Write down the characteristic polynomial of \(A \).

(b) Determine the spectrum and the eigenvectors of \(A \).

(c) Determine the algebraic and geometric multiplicities of each eigenvalue. Is \(A \) simple?

Prob. 5 Consider the linear transformation \(A \) defined on \(\mathbb{R}^3 \) defined by

\[
\begin{align*}
Av_1 &= v_1 - v_2, \\
Av_2 &= -v_1 + v_2 + v_3, \\
Av_3 &= -v_1 + v_2,
\end{align*}
\]

where \(B = \{v_1, v_2, v_3\} \) is a basis for \(\mathbb{R}^3 \).

(a) Determine the spectrum of \(A \).

(b) Determine all the eigenvectors of \(A \) (express them in terms of the
basis vectors in \mathcal{B}). Show that the eigenvectors of A form a basis for the space \mathbb{R}^3. Write down the matrix representation of A with respect to its eigenvectors.

(c) Find the linear transformation B which relates the eigenvectors of A and the basis vectors in \mathcal{B}.

(d) Find the matrix representation of $C = A^5 + 3A^3$ with respect to basis \mathcal{B}.