Problem 1 (a) \(x(k+2) + 2x(k+1) - 3x(k) = 0 \).

Seek a solution of the form \(x(k) = \lambda^k \). The characteristic equation is:
\[\lambda^2 + 2\lambda - 3 = 0. \]

Thus, the general solution is:
\[x(k) = c_1(-3)^k + c_2. \]

To satisfy the initial conditions: \(x(0) = c_1 + c_2, \quad x(1) = -3c_1 + c_2 \Rightarrow c_1 = (x(0) - x(1))/4 \) and \(c_2 = (3x(0) + x(1))/4. \) If \(x(1) = x(0) \neq 0 \), then \(c_1 = 0 \) and \(x(k) = c_2 \) for all \(k \geq 0 \).

ANS. True.

(b) Consider:
\[\alpha(v_1 - 2v_2 + v_3) + \beta(v_1 - 2v_2 + v_3) + \gamma(2v_1 + v_3) = 0. \]
\[(\alpha + \beta + \gamma)v_1 - 2(\alpha + \beta)v_2 + (\alpha - \beta + \gamma)v_3 = 0. \]

By linear independence of \(\{v_1, v_2, v_3\} \), we have
\[\begin{cases}
\alpha + \beta + 2\gamma = 0, \\
-2(\alpha + \beta) = 0, \\
\alpha - \beta + \gamma = 0.
\end{cases} \]

Hence, \(\{w_1, w_2, w_3\} \) is also linearly independent.

ANS. True.

(c) Given:
\[\begin{align*}
x_1(k+1) &= x_1(k) - x_2(k) + 3, \\
x_2(k+1) &= -x_1(k) + 2x_2(k) - 2.
\end{align*} \tag{1} \tag{2}

we have
\[x_1(k+2) = x_1(k+1) - x_2(k+1) + 3. \tag{3} \]

Using (2), (3) can be rewritten as
\[x_1(k+2) = x_1(k+1) + x_1(k) - 2x_2(k) + 5. \tag{4} \]

Using (1) to eliminate \(x_2(k) \) in (4), we obtain
\[x_1(k+2) = x_1(k+1) + x_1(k) - 2(x_1(k) - x_1(k+1) + 3) + 5 \\
= 3x_1(k+1) - x_1(k) + 1. \]

ANS. False

(d) The set \(S \) of vectors \(x = (x_1, x_2, x_3) \) in \(R^3 \) such that \(x_1 + x_2 = 0 \) and \(x_3 \neq 0 \) is a subspace of \(R^3 \), since \(S = \{ x \in R^3 : x = (x_1, -x_1, x_3) = x_1(1, -1, 1), \}
\(x_3 \) is any real number). But \(S \) is one-dimensional, since \(v = (1, -1, 1) \) is a basis for \(S \).

ANS. False

(e) By assumption: \(Av = \lambda v, \) \(B = \mu v. \) Thus, \((A^3 B^2 - 2B)v = A^3 B^2(\lambda v) - 2\mu v = \lambda A^3 B^2 v - 2\mu v = \lambda^2 A^3 v - 2\mu v = (\lambda^2 \lambda - 2\mu)v = (\lambda^4 \mu - 2\mu)v. \) Therefore, \(v \) is an eigenvector of \(C = A^3 B^2 - 2B \) corresponding to the eigenvalue \(\lambda^4 \mu - 2\mu. \)

When \(\lambda^4 \mu = 2\mu, \) then \(C \) is singular.

ANS: True.

(f) From the matrix representation of \(A \) with respect to \(B \), we have
\[\mathbf{A} \mathbf{v}_1 = -2 \mathbf{v}_1 + 2 \mathbf{v}_2 + \mathbf{v}_3, \]
\[\mathbf{A} \mathbf{v}_2 = -2 \mathbf{v}_2 + 2 \mathbf{v}_3, \]
\[\mathbf{A} \mathbf{v}_3 = -2 \mathbf{v}_1 + \mathbf{v}_3. \]

Thus,
\[\mathbf{A}(\mathbf{v}_1 + 2 \mathbf{v}_2) = -2 \mathbf{v}_1 + 2 \mathbf{v}_2 + \mathbf{v}_3 + 2(- \mathbf{v}_2 + 2 \mathbf{v}_3) = -\mathbf{v}_1 - 4 \mathbf{v}_2 + 5 \mathbf{v}_3, \]
\[\mathbf{A} \mathbf{v}_2 = -2 \mathbf{v}_2 + 2 \mathbf{v}_3, \]
\[\mathbf{A}(\mathbf{v}_1 - \mathbf{v}_3) = -\mathbf{v}_1 - 2 \mathbf{v}_2 + \mathbf{v}_3 + 2 \mathbf{v}_1 - \mathbf{v}_3 = \mathbf{v}_1 - 2 \mathbf{v}_2. \]

Consider
\[\alpha \mathbf{A}(\mathbf{v}_1 + 2 \mathbf{v}_2) + \beta \mathbf{A} \mathbf{v}_2 + \gamma \mathbf{A}(\mathbf{v}_1 - \mathbf{v}_3) = \alpha (-\mathbf{v}_1 - 4 \mathbf{v}_2 + 5 \mathbf{v}_3) + \beta (-2 \mathbf{v}_2 + 2 \mathbf{v}_3) + \gamma (\mathbf{v}_1 - 2 \mathbf{v}_2)^* = 0 \]

or
\[(-\alpha + \gamma) \mathbf{v}_1 + (-4 \alpha - \beta - 2 \gamma) \mathbf{v}_2 + (5 \alpha + 2 \beta) \mathbf{v}_3 = 0. \]

By linear independence of \(\{ \mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3 \} \), we have
\[-\alpha + \gamma = 0, \]
\[-4 \alpha - \beta - 2 \gamma = 0, \]
\[5 \alpha + 2 \beta = 0. \]

Hence, \(\{ \mathbf{v}_1 + 2 \mathbf{v}_2, \mathbf{A} \mathbf{v}_2, \mathbf{A}(\mathbf{v}_1 - \mathbf{v}_3) \} \) is linearly independent. ANS: True

(g) Consider the characteristic equation of \(\mathbf{A} \) given by
\[\det \begin{bmatrix} 2-\lambda & 0 & 0 \\ -1 & -\lambda & 1 \\ 1 & -1 & -\lambda \end{bmatrix} = (2 - \lambda)(\lambda^2 + 1) = 0. \]

Roots: \(\lambda_1 = 2, \lambda_{2,3} = \pm i \).

Since the vector space is real, hence only \(\lambda_1 \) is an eigenvalue of \(\mathbf{A} \). Its corresponding eigenvector only spans an one dimensional vector space. Hence \(\mathbf{A} \) is not simple. ANS: False

(h) Given: \(\mathbf{A} \mathbf{v}_1 = \mathbf{v}_1 + \mathbf{v}_2 - \mathbf{v}_3, \mathbf{A} \mathbf{v}_2 = -3 \mathbf{v}_2, \mathbf{A} \mathbf{v}_3 = \mathbf{v}_1 - \mathbf{v}_3. \)

\[\det(\mathbf{A}) = \begin{vmatrix} 1 & 0 & 1 \\ 1 & -3 & 0 \\ -1 & 0 & -1 \end{vmatrix} = 0 \Rightarrow \mathbf{A} \text{ is singular} \Rightarrow \mathbf{A} \mathbf{x} = 0 \text{ for some nonzero } \mathbf{x}. \]

In fact, \(\mathbf{A}(\mathbf{v}_1 + 2 \mathbf{v}_2 - 3 \mathbf{v}_3) = 0. \) ANS: True

(i) Given \(\mathbf{A} \) and \(\mathbf{B} \) are distinct simple linear transformations on the vector space \(\mathcal{V} \), can \(\mathbf{C} = \mathbf{A} \mathbf{B}^2 \) be simple?

Let \(\mathbf{A} = \mathbf{I} \) (identity), \(\mathbf{B} = 2 \mathbf{I} \) (both \(\mathbf{A} \) and \(\mathbf{B} \) are simple). Then \(\mathbf{C} = 2 \mathbf{I} \) is simple. ANS: False

Prob. 2 (a)
\[\mathbf{A} \mathbf{v}_1 = [1 0 0] \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 1 & 1 & 1 \end{bmatrix} = [1 0 0] = \mathbf{v}_1; \]
\[\mathbf{A} \mathbf{v}_2 = [1 1 0] \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 1 & 1 & 1 \end{bmatrix} = [1 -1 0] = 2 \mathbf{v}_1 - \mathbf{v}_2; \]
\[\mathbf{A} \mathbf{v}_3 = [1 1 0] \]
\[
A = \begin{bmatrix}
0 & 1 & -1 \\
1 & 0 & 0 \\
0 & -1 & 0 \\
1 & 1 & 1
\end{bmatrix}
= \begin{bmatrix}
-1 & -2 & -1 \\
2v_1 & -3v_2 & v_3
\end{bmatrix}.
\]

Then, the matrix representation of \(A \) with respect to basis \(B \) is
\[
[A]_B = \begin{bmatrix}
1 & 2 & 2 \\
0 & -1 & -3 \\
0 & 0 & 1
\end{bmatrix}.
\]

(b) By inspection, the eigenvalues of \(A \) are: \(\lambda_1 = -1, \lambda_2, \lambda_3 = 1 \) (algebraic multiplicity = 2). The geometric multiplicity = 1, since the eigenvectors of \(A \) corresponding to \(\lambda_2, \lambda_3 = 1 \) are nonzero scalar multiples of \(v_1 \). Hence, \(A \) is not a simple linear transformation.

(c) Since \(A \) has no zero eigenvalues, thus \(A \) is nonsingular \(\rightarrow \) null space of \(A = \{0\} \), and the range of \(A \) is the whole space \(V \). Hence the nullity of \(A \) is zero, and the rank of \(A \) is 3.

(d) Let \(x(k) = \sum_{i=1}^{3} x_i v_i \). Hence the matrix representation of \(x(k+1) = Ax(k) \) is
\[
[x(k+1)]_B = [A]_B [x(k)]_B = \begin{bmatrix}
x_1(k) \\
x_2(k) \\
x_3(k)
\end{bmatrix}.
\]
The equilibrium state \(x_{eq} \) of this system is given by:
\[
[x_{eq}]_B = [A]_B [x_{eq}]_B \quad \text{or} \quad [x_{eq}]_B = \begin{bmatrix}
0 \\
0 \\
0
\end{bmatrix}, \quad [x_{eq}]_B = \begin{bmatrix}
a \\
0 \\
0
\end{bmatrix}, \quad a \text{ is any real number},
\]
or \(x_{eq} = Av_i = [a \ 0 \ 0] \).

Prob.3 (a) The equivalent single second-order differential equation is:
\[
d^2x_1/dt^2 - 2t^{-2}x_1 = u(t).
\]
We seek solutions to the above equation with \(u(t) = 0 \) in the form \(x_1(t) = t^k \). By direct substitution, we have
\[
k(k-1)t^{k-2} - 2t^{k-2} = 0 \Rightarrow k^2 - k - 2 = 0. \quad \text{Roots: } k_1 = -1, \ k_2 = 2.
\]
This gives two solutions to the homogeneous equation:
\[
x_1^{(1)}(t) = t^{-1}, \quad x_1^{(2)}(t) = t^2.
\]
To check their linear independence, we compute the Wronskian:
\[
W(x_1^{(1)}(t), x_1^{(2)}(t)) = \begin{vmatrix}
x_1^{(1)}(t) & x_1^{(2)}(t) \\
x_1^{(1)}(t) & x_1^{(2)}(t) + t^2\end{vmatrix} = t^{-1}2t - t^2(-t^{-2}) = 3.
\]
Thus the general solution to the homogeneous equation is
\[
x_1(t) = c_1 t^{-1} + c_2 t^2, \quad c_1, c_2 \text{ are arbitrary real numbers}.
\]
(b) Given: \(u(t) = t \). Find the general solution to the nonhomogeneous equation. By the method of variation of parameters, here, we seek a particular solution in the form:

\[
z(t) = v_1(t)x^{(1)}(t) + v_2(t)x^{(2)}(t) = t^{-1}v_1(t) + t^2v_2(t).
\]

We compute:

\[
dz(t)/dt = t^{-1}v_1(t) - t^{-2}v_1(t) + 2tv_2(t) + t^2v_2(t)
\]

and set

\[
t^{-1}v_1(t) + t^2v_2(t) = 0 \quad \Rightarrow \quad v_1(t) = -t^3v_2(t).
\]

Thus,

\[
d^2z(t)/dt^2 = 2t^{-3}v_1(t) - t^{-2}v_1(t) + 2v_2(t) + 2tv_2(t).
\]

Substituting the above expressions into the nonhomogeneous differential equation gives:

\[
2t^{-3}v_1 - t^{-2}v_1 + 2v_2 + 2tv_2 - 2t^{-2}(t^{-1}v_1 + t^2v_2) = -t.
\]

or

\[
-t^{-2}v_1 + 2tv_2 = -t \quad \Rightarrow \quad \dot{v}_1 - 2t^3v_2 = t.
\]

From (1) and (2), we have

\[
3v_2(t) = -1 \quad \Rightarrow \quad v_2(t) = -t/3 \quad \Rightarrow \quad \dot{v}_1(t) = t^3/3 \quad \Rightarrow \quad v_1(t) = t^4/12.
\]

Thus, we have a particular solution

\[
z(t) = t^{-1}v_1(t) + t^2v_2(t) = \frac{1}{12}t^3 - \frac{1}{3}t^3 = -t^3/4.
\]

So the general solution is given by

\[
x(t) = x(t) + z(t) = c_1t^{-1} + c_2t^2 - t^3/4
\]